



# Module 10 PERFORATING APPLICATIONS



# CONTENT

- Perforating for cement squeeze
- Perforating for hydraulic fracturing
- Perforating for sand control completions
- Perforating for sand management
- Perforating water injectors



### **PERFORATING APPLICATIONS**

Different well and reservoir requirements might require different perforating methods and gun design. Two(2) key issues are always critical; well productivity and safety of the operations. Other considerations include

- Gun orientation for hydraulic fracturing, frack & pack and sand management
- Perforating density for water injectors and sand control completions
- Depth control for multilayer reservoirs
- Charge penetration for competent or unconsolidated reservoir rocks



### **PERFORATING APPLICATIONS – CEMENT SQUEEZE**

Main considerations

include:

- Entry hole diameter
- Depth control
- Phasing
- Penetration

| PARAMETER           | IMPORTANCE | GUIDELINE                                                     |
|---------------------|------------|---------------------------------------------------------------|
| Entry hole diameter | Medium     |                                                               |
| Length              | High       | For maximum flow area exposed                                 |
| Density             | High       | 4 < SPF < 8                                                   |
| Phasing             | High       | $30^{\circ}$ < phase < 120° for max. circumferential coverage |
| Orientation         | Low        | No applicable                                                 |
| Charges             | Medium     | Important to achieve good penetration                         |
| Method              | High       | Wireline conveyed is the preferred if possible                |
| Fluids              | High       | Existing hydrocarbons or clean workover fluid                 |
| Pressure            | Medium     | Underbalance or near balance are preferred                    |



# **PERFORATING APPLICATIONS – HYDRAULIC FRACTURING**

# Hydraulic fracturing is the opening of a conductive flow path in a rock with low porosity and permeability

Main considerations include

- Entry hole diameter
- Depth control
- Orientation
- Casing integrity





## **PERFORATING APPLICATIONS – HYDRAULIC FRACTURING (Continued)**

# Main considerations include

- Entry hole diameter
- Depth control
- Orientation
- Casing integrity

| PARAMETER           | IMPORTANCE      | GUIDELINE                                                |
|---------------------|-----------------|----------------------------------------------------------|
| Entry hole diameter | High            | Larger hole diameter if possible, it increases friction  |
|                     |                 | pressures if too small                                   |
| Length              | Low             | Formation will be fractured so all what is needed is     |
|                     |                 | some penetration into the rock                           |
| Density             | Medium          | Depending on the flow rate, normally < 8 spf             |
| Phasing             | High            | 180 ° , 90 °                                             |
| Orientation         | High            | Shots in the direction of fracture propagation to avoid  |
|                     |                 | the tortuosity effect                                    |
| Charges             | Low             | Sufficient to allow a short tunnel to be generated       |
| Method              | High            | Wireline conveyed for satisfactory depth control         |
| Fluids              | Medium          | Clean workover fluid                                     |
| Pressure            | Low             | Near balance                                             |
| conditions          |                 |                                                          |
| Main concern        | Control of frac | ture growth, direction and orientation, casing integrity |



# **PERFORATING APPLICATIONS - SAND CONTROL**

- There are four (4) main sand control methods that require perforating, all have specific requirements
- 1. Internal gravel packs Shot density and penetration
- 2. Frack & packs Orientation and shot density
- 3. Stand-alone-screens in cased holes Penetration and shot density
- 4. Sand consolidation Shot density, entry hole diameter and fluids





### **PERFORATING APPLICATIONS – SAND CONTROL (Frac & Pack)**

| PARAMETER           | IMPORTANCE                                                | GUIDELINE                                              |
|---------------------|-----------------------------------------------------------|--------------------------------------------------------|
| Entry hole diameter | Medium                                                    | Sufficient to minimize friction losses                 |
| Length              | Low                                                       | -                                                      |
| Density             | Medium                                                    | 4 < SPF < 6                                            |
| Phasing             | High                                                      | 30° < phase < 120° for max. circumferential coverage   |
| Orientation         | Low                                                       | Not very important because K is high                   |
| Charges             | Low                                                       | -                                                      |
| Method              | High                                                      | Done w/TCPs for cost reasons but wireline is preferred |
| Fluids              | Medium                                                    | Clean workover fluid                                   |
| Pressure            | Low                                                       | Near balance is satisfactory                           |
| Conditions          |                                                           |                                                        |
| Main concern        | Avoid vertical fracture growth and ensure tip screen out. |                                                        |



### **PERFORATING APPLICATIONS – SAND MANAGEMENET**

Wells on sand management can be completed with selected or oriented perforations





## **PERFORATING APPLICATIONS – WATER INJECTORS**

The main considerations in this

case are

- Penetration
- Density
- Casing integrity
- Entry hole diameter

| PARAMETER           | IMPORTANCE                                 | GUIDELINE                                                  |
|---------------------|--------------------------------------------|------------------------------------------------------------|
| Entry hole diameter | High                                       | Larger hole diameter to minimize pressure losses           |
| Length              | Medium                                     | Sufficient to establish good communication with the        |
|                     |                                            | reservoir                                                  |
| Density             | Medium                                     | Very dependable on K, for $\uparrow$ K there is no need to |
|                     |                                            | perforate high density, 4 < spf < 12                       |
| Phasing             | Medium                                     | Depend on density and well orientation, design to          |
|                     |                                            | ensure good radial distribution of flow                    |
| Orientation         | Low                                        | Depend on well azimuth and deviation                       |
| Charges             | Low                                        | Sufficient to establish communication with reservoir       |
| Method              | Medium                                     | Wireline conveyed for satisfactory depth control           |
| Fluids              | Medium                                     | Existing hydrocarbons, clean workover fluid                |
| Pressure            | Medium                                     | Mainly perforated overbalance                              |
| conditions          |                                            |                                                            |
| Main concern        | Casing integrity and long term performance |                                                            |



#### SUMMARY

The selection of a perforating method and gun system is in most cases specific to the application. As a result, each application requires the ranking of the method and gun performance suitable. Among those applications we have:

- Squeeze cementing penetration, shot density and depth control
- Hydraulic fracturing orientation, entry hole diameter and shot density
- Water injectors shot density, entry hole diameter and charge penetration
- There are five(5) sand control methods that require perforating; stand-alone-screens, internal gravel packs, frack and pack, sand consolidation.

Sand management requires the use of a perforating method and gun type that minimize or mitigate the stress conditions around the tunnels therefore, selective or oriented perforating are often used.

