

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques

- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 01

Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques

LEARNING OBJECTIVES

- ► GOAL01: Artificial Intelligence Terminology
- ➤ GOAL02: Fundamentals of Soft Computing/Statistics
- ➤ GOAL03: Machine and Deep Learning Techniques in Upstream Exploration and Production (E&P)

Terms most often heard

Artificial Intelligence Terminology

Artificial Intelligence = Knowledge

- Labeled Data
- Direct Feedback
- Predict outcome/future

Essentials of Statistics

What are statistics?

Make sense of your data Identify trends and correlations Find useful patterns Propose hypotheses worth modeling

Descriptive Statistics:

Descriptive statistics are brief descriptive coefficients that summarize a given data set

Inferential Statistics:

Help you come to conclusions and make predictions based on your data

Essentials of Statistics

Data is usually classified into one of four different levels of measurement:

- nominal (a.k.a. categorical or discrete)
- ordinal (rank order)
- **interval** (continuous)
- ratio

Qualitative DataDescriptive/CategoricalQuantitative DataNumeric Connotation

Data Preparation for Al

Fundamentals of Applied Data-Driven Analytics

Dependent and **Independent** variables are the components in mathematical modeling, statistical modeling and experimental sciences.

Data Preparation for Al

Fundamentals of Applied Data-Driven Analytics

Machine & Deep Learning Techniques

	Overview	Process	Subtypes	Examples
Supervised Learning	Majority of algorithms. Machine is trained using well-labeled data ; inputs and outputs are matched.	Mapping function takes inputs and matches to outputs, creating a target function.	Classification, Regression	Linear regression, Random forest, SVM.
Unsupervised Learning	Unlabeled data (inputs only) is analyzed. Learning happens without supervision.	Inputs are used to create a model of the data.	Clustering, Association.	PCA, k-Means, Hierarchical clustering.
Semi supervised	Some data is labeled, some not. Goal: better results than labeled data alone. Good for real world data.	Combination of above processes.	All the above.	Self training, Mixture models, Semi-supervised SVM

What is Machine Learning?

Supervised Learning

The aim of supervised machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty.

• Classification techniques predict discrete responses, for example, whether a reservoir has bypassed pay. Classification models classify input data. Typical applications include seismic imaging, well-log pattern recognition, and facies classification.

• Regression techniques predict continuous responses, for example, changes in temperature or pressure in a producing well. Typical applications include production forecasting.

What is Machine Learning?

Unsupervised Learning

Finds hidden patterns or intrinsic structures in data. It is used to draw inferences from datasets consisting of input data without labeled responses.

Clustering is the most common unsupervised learning technique. It is used for exploratory data analysis to find hidden patterns or groupings in data. Applications for clustering include reservoir characterization, field reengineering, and DHI object recognition in seismic wavelet data.

Deep Learning Techniques

Recurrent Neural Network

DAE Architecture

Convolutional Neural Network

Time Series Analysis

What is Forecasting and Optimization?

Predicting future needs for a product or service, while **Optimization** is maximizing results within a set of constraints.

Predictive Models

Artificial Neural Networks

Predictive Models

Support Vector Machine

The SVM is a supervised machine learning algorithm that constructs a hyperplane or set of hyperplanes to distinguish between instances of different classes.

Predictive Models

Random Forest

A forest is an **ensemble** model that contains a specific number of decision trees. To ensure that a forest does not overfit the data, two key steps are taken. First, each tree in the forest is built on a different sample of the training data. Second, when splitting each node, a set of candidate inputs for the split are selected at random, and the best split is selected from those. Other than these two steps, the trees in a forest are trained like standard trees.

Module 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation

MODULE 02

Exploratory Data Analysis (EDA) is crucial in analyzing upstream Oil and Gas (O&G) data. It involves examining and understanding the data's characteristics, patterns, and relationships before applying formal statistical or machine-learning techniques. EDA helps uncover insights, identify data quality issues, and formulate hypotheses for further analysis. We shall explain the typical steps involved in conducting EDA for upstream O&G data:

- 1. Data Collection and Data Cleaning
- 2. Data Visualization
- 3. Descriptive Statistics
- 4. Feature Engineering
- 5. Correlation and Spatial Analysis
- 6. Hypotheses Generation

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques

MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation

MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering

MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P

MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning

MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 02

Exploratory Data Analysis: Upstream Data Exploration and Explanation

LEARNING OBJECTIVES

- ➤ GOAL01: Data Management and Data Cleaning Steps
- ➤ GOAL02: Upstream Exploratory Data Analysis (EDA) using Tukey Diagrams
- ➤ GOAL03: Descriptive Modeling in Upstream Exploration and Production (E&P)
- ➤ GOAL04: Process & Methodology for E&P Model Development

UPSTREAM DATA MANAGEMENT

Identify Trends, Correlations and Signatures in Patterns

Explore the data to find trends, correlations, and hidden relationships. The goal is to find patterns or signatures in your data to use them to predict future events in a time series or across spatial data.

The Tukey diagrams give you a visual appreciation of the data in univariate and bivariate analysis.

Correlation Matrices

Scatter Plots

Scatter Plot of Selected Measures

SumofPropVol

Descriptive Modeling

Descriptive modeling techniques cover two major areas:

- 1. Clustering
- 2. Associations
- 3. Classification

The objective of clustering or segmenting your data is to place objects into groups or clusters suggested by the data such that objects in each cluster tend to be like each other in some sense and objects in different clusters tend to be dissimilar

Clustering Examples:

Upstream: Well Characteristics (Operational – Completion strategies/Petrophysical Midstream: Pipeline segments, Cathodic Protection Stations, Pressure drops Downstream: Amine Towers (Good & Bad process efficiency), Pump Lifetimes

Clustering

- Cluster_Analysis
- Distance Measures (Metrics)
- Evaluating Clustering
- Number of Clusters
- k-means Algorithm
- Hierarchical Clustering
- Profiling Clusters

Cluster Analysis to Optimize Completion Strategies in an Unconventional Reservoir

Data Processing

- 1. K-means Clustering Algorithm
- 2. Hierarchical Clustering Algorithm
- 3. Model-Based Clustering Algorithm

SEMMA Process

- Sample
- Explore
- Modify
- <u>M</u>odel
- <u>A</u>ssess

Module 03

Data Preparation for AI: Upstream Data Augmentation and Feature Engineering

MODULE 03

Data Preparation:

1.Data Collection: Gather the relevant data from various sources, such as well logs, production data, geological surveys, and reservoir engineering reports.

2.Data Cleaning: Remove or handle missing values, outliers, and inconsistencies in the dataset. This may involve imputation techniques, filtering, or deleting problematic data points.

Data Augmentation (GAI):

1.Synthetic Data Generation: Generate additional data points using techniques like oversampling, undersampling, or SMOTE (Synthetic Minority Over-sampling Technique) to balance imbalanced classes or increase the diversity of the dataset.

2.Time-Series Augmentation: Create variations of the original time-series data by introducing noise, time shifting, or resampling to capture different scenarios or increase the dataset size.

Feature Engineering:

1.Domain Knowledge: Leverage subject matter expertise to identify relevant features based on geological, geophysical, and engineering insights. This may involve extracting key attributes, engineering composite features, or creating derived variables.

2.Dimensionality reduction: Apply techniques such as Principal Component Analysis (PCA) or feature selection algorithms to reduce the number of features while retaining the most informative ones.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 03

Data Preparation for AI: Upstream Data Augmentation and Feature Engineering

LEARNING OBJECTIVES

- ➤ GOAL01: Upstream Data Preparation Techniques for AI Workflows
- ➢ GOAL02: Upstream Data Augmentation: GAI
- ➤ GOAL03: Feature Engineering

Upstream Data Preparation Steps

$$Data \longrightarrow Preparation \longrightarrow Analysis \longrightarrow Insight \longrightarrow Decisions$$

Data on Demand

Provides correct and complete data to the right people at the right time in the right form.

Decisions You Can Trust

Decisions are only as good as the underlying data. Make decisions you can trust with data you can rely on.

Data-Driven Business

Leading O&G operators are data-centric. Put optimized and enriched data to work in your business.

Upstream Data Preparation Steps

Scaling

We have implemented a data preparation set of well log analytics and enrichment workflows to enable an innovative lithology-fluid pattern recognition assistant.

Augmentation: Imbalanced Data – Tomek Link

Augmentation: Imbalanced Data – SMOTE

- Minority class samples
- Synthetic samples

Augmentation: Generative Adversarial Networks

Total loss = discriminator loss + reconstruction loss

- Our goal is to learn a mapping G: X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
- We couple this mapping with an inverse mapping
 F: Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa).

GAN Training: Train the GAN using real data samples. The generator is trained to generate synthetic samples that mimic the characteristics of the real data, while the discriminator is trained to distinguish between real and synthetic samples. The training involves an iterative process of updating the generator and discriminator networks to achieve a competitive equilibrium. **Synthetic Data Generation:** The generator network generates synthetic samples once the GAN is trained. The GAN will produce synthetic data samples like the real data distribution.

Data Integration: Combine the real data samples with the generated synthetic samples to form an augmented dataset.

Generative AI (ChatGPT) in O&G Upstream

Create a python script for sample data for 50 wells with 10 well bores each and each well bore has 9 stages. Include the following parameters NetH, Phi, Sg, Distance from Peak, Laplacian, Dip, Delta Height, Sum of Prop Vol, Qg100, Water Saturation, Pressure Gradient, EUR, Lateral Length, Stage Spacing. Save the output as a CSV file

ShellGAI	SEd .	81		1													
Source	1.	Well	Well Bore	State	NetH (ft)	PhilOD	50 (%)	Distance (ft)	Lanlacian	Dio ideorees)	Delta Height	Sum of Prop Value	OG100 MMscft	Water Saturation	Pressure Gradient	Lateral Length (ft)	Stage Spacing (ft)
	100	1 1	1	1	115,3508648	20.08358153	71,28888667	735,7465697	0.062788837	9,911136558	232,1748743	5263,129947	76.61375847	26.50248416	0.483132272	5388,853941	103.6878181
		2 1	1	2	105.0189317	24.02831669	81.33902333	423.573941	0.043472298	8.247276797	205.8356519	5318.977328	78.10498506	26.90029601	0.459189435	5617,709328	101.4632348
		3 1	1	3	138.3977138	23.41113061	82.68871067	606.4420788	0.046227365	10.58861926	201.4433845	4807.578256	86.43963254	28.15551733	0.47748332	5029.914953	106.5972634
		4 1	1	4	140,4557159	23,46314577	76.59016713	459,7448032	0.048349178	9.135097691	186.7799386	5072.927784	77.67585643	30.57331582	0.539333313	5980.226436	123.1853797
		5 1	1	5	125.8903279	19.31530594	87.6233268	597.3638469	0.037102747	10.63918077	189.9805739	5197.482462	83.0062503	26.98647243	0.559320403	5828.513858	143.6095486
		6 1	1	6	119.5162739	23.21718461	87,71988893	762.6507273	0.036554676	10.74470164	229.4518674	4898.005633	78.44969253	27.30853637	0.580451096	5252.181032	122.44676
and the second second		7 1	1	7	97.20906954	17,19969355	72.53321818	513,1665839	0.044694138	11,25921038	234.3515789	4885,834209	78.83288036	26.29608003	0.433771404	5655.078406	129.1016393
Columns (10/0)		8 1	1 1	8	102.0745788	21.30516828	70.1652977	542.7373843	0.03485809	11.03203262	219.1728483	4961.821933	78.59427741	31.3119684	0.572297744	5577.964122	105.9612568
u,	-	9 1	1	. 9	103.6536847	20.32381771	85.38531129	515.6614761	0.049509513	11,20040013	232.1266285	4900.857764	79.82483214	31.27624453	0.460682144	5551,231644	117.7593922
Well Well Bore Stage NetH (ft) Phi (ft) Distance (ft) Laplacien Dig (fs) Dete Height Sum of Prop Value GG100 (MMscf) Water Saturation	1	0 1	2	1	88.99083624	15.1527001	82.89348549	594.6647664	0.062899338	8.030375157	191.5245002	4767.242659	75.64161327	30.99049797	0.490501534	5118.66205	131.2620026
	1	1 1	2	- 2	121.8880461	18.58874875	70.96376675	455.7411406	0.049519817	11.57302236	191.9723933	4897.343082	87.78878071	27.34114329	0.554730693	5198.063335	126.0475438
	1	2 1	2	3	112.0205264	24.0248295	72.00510625	719.5253977	0.05825964	8.409833919	219.9204788	5273.218654	87.94201095	27.31707811	0.448529708	5546.439066	105.2553378
	1	3 1	2	4	83.83801623	22.66346313	70.52413641	643.8697317	0.031582124	8.202672315	239.2210635	4702.947052	82.0507185	29.47363061	0.473797334	5288.996678	131.6190649
	1	4 1	2	5	118.9641582	21.03386682	83.44281276	418.0506299	0.067875102	9.557997021	226.3178666	4968,477672	76.00585029	30.73814401	0.488057054	5165.142462	141.0217036
	1	5 1	2	6	133.1444126	20.08490624	84.5375879	718.277311	0.066327263	10.84535757	227.0074627	5351.371511	84.79731378	29.63314012	0.409891307	5607.19527	122.0628389
	1	6 1	2	7	132.1966137	17.33905782	86.63298193	543.9900449	0.060305591	9,183998997	209.5121539	5258.194994	82.10854915	29.24297185	0.479166802	5672.266833	131.4903948
	1	7 1	2	8	145.2566267	15.91405456	86.96015024	760.0182213	0.03202747	11.25107992	223.1798732	5240.286075	76.48555844	30.93426526	0.571131598	5161.090607	133.7235725
	1	8 1	2	9	125.0552036	16.71010495	85.0462936	412.1335315	0.053597387	10.13192191	191.359192	5142.067085	79.7675074	29.44581954	0.498022418	5570.777301	128.9830186
	1	9 1	3	1	126.1628274	19.83638454	72.08728404	607.2932314	0.058504578	8.305994321	235.5471461	4902.442551	86.78355616	30.93559987	0.587109097	5594.818027	131.1035091
	2	0 1	3	2	135,1613267	22.60158266	70.1775458	516.7440375	0.058242948	9.228297874	189.6207491	4744.000539	85.72492377	28.99457088	0.415085663	5847.342904	117.5299751
 Pressure Gradient Interal Leopth (ff) 	2	1 1	3	3	86.87283576	22.30507714	77.37630373	718.3466392	0.056235011	11.21734707	232.8487959	5214.479317	86.38791214	27.42701303	0.446199529	5573.420462	113.100009
Stage Spacing (ft)	2	2 1	3	- 4	125.7990166	18.10867779	86.6346381	627.6078429	0.057113259	11.88731187	236.2437496	4902.818943	82.24506257	27.18312838	0.465720759	5379.409773	120.2070077
	2	3 1	3	5	99.88203014	23.95577837	88.88282573	618.4990034	0.032308475	11.9644409	231.2820363	4767.857048	89.37410208	26.67851387	0.498542911	5351.180343	134.0257076
	2	4 1	3	6	133.5092603	16.04184935	84.16821004	692.3761781	0.043207408	8.899922281	227.8504318	5025.317379	80.37511939	27.01031346	0.43159785	5910.684672	141.5355221
	2	5 1	3	7	128,4974324	21.00222222	73.08407515	464.305989	0.030320362	10.04532884	203.510717	5072.6171	77.03509767	29.37913877	0.448825267	5513.795937	127.4380259
	2	6 1	3		94.35383758	22.91490487	85.62531236	447.6895704	0.062359425	10.87994381	196.0292856	4854.016346	88.0641691	29.86551321	0.443368304	5452.927259	108.0495195
	2	7 1	3	9	102,0318764	17.78286543	76.67546216	421.000981	0.055162634	10.33675138	211.0570795	5182,54427	87.57521555	30.07696771	0.513935793	5102.266834	117.4331795
	2	8 1	4	1	143.7515905	15.45491795	73.27219287	470.8278446	0.051622743	9.107476766	222.8555991	5392.940879	83.24351111	27.12471357	0.596382274	5626.265291	102.0901141
	2	9 1	4	2	96.17674928	24.57048388	82.44885426	404.1954616	0.036807422	8.381622926	195.8167549	4756.216883	85.49070022	29.48941139	0.508101781	5807.75989	147.4511016
	3	0 1	4	3	137.4993542	21.73757411	84.98663579	700.2873434	0.060447049	10.13495028	204.640599	5139.711974	79.33748998	31.40568952	0.442999438	5600.840122	101.8501011
	3	1 1	4	4	114,7706073	22.33395683	85.90010699	437.9623787	0.04355526	9.258742724	239.3434272	5265.228719	76.40263188	29.92700355	0.578524596	5815.649506	132.4351939
	3	2 1	4	5	118.6350632	20.97346128	79.19714022	454.7468517	0.044949515	9.668737106	193.0773861	5182.49945	83.77260787	30.93219067	0.590103412	5649.256846	124.9416537
	3	3 1	4	6	135.4081107	15.79949141	74.07104509	670.8748923	0.061297203	9.297919189	193.0607722	5383.808504	88.14850236	28.77347417	0.552975979	5858.757024	102.6624758
	3	4 1	4	7	133.3067885	15.31742447	72.71425614	591.9509869	0.036370617	11.19165349	214.7605168	5020.863838	87.17237534	31.19110959	0.482155562	5436.652427	110.0018001
	3	5 1	4	8	101,4975012	22.69593393	72.96419976	798.1883854	0.04205839	8.219584611	236.9064094	5240.636367	75.93851205	28.66738102	0.534763073	5499.98312	7.8267421
	3	6 1	4	. 9	116.7992965	20.31185872	87.60941833	515.0876363	0.049487648	10.407549	232.8346185	5097.661808	83.51474644	31.03968978	0.484644958	5072	7636663
	3	7 1	5	1	128.7529134	18.52693269	75.82153802	528.270574	0.053261144	9.13674309	226.2352173	5169.051076	78.80407056	27.27444439	0.548208934	5501.1	
	3	8 1	5	2	86.49613186	20.07774036	88.82383116	731.7281643	0.058578695	10.32255421	237.0707945	4779.655217	89.71849435	30.52147	0.516333513	5061.3.	
 Rows 	3	9 1	5	3	137.614093	23.86514486	75.96103595	505.6100129	0.063184549	11.636322	201.1982657	4838.584884	86.24739771	28.33353816	0.433199212	5284.7	
All rows 9,000 Selected 0 Excluded 0 Hidden 0 Labeled 0	4	0 1	5	4	142.2939046	15.38447461	83.23681777	790.8387557	0.039175009	9.87957714	239.605726	4808.41016	87.58087293	31.3032063	0.411824092	5298.138	1
	4	1 1	5	5	137.4645209	23.10251831	80.75522354	503.6986091	0.049832772	11.45414779	212.2410086	5098.660206	78.28039366	27.43459612	0.573422973	5113.893728	104.7581828
	4	2 1	5	6	132.2561779	20.71331297	75.31440685	558.6029301	0.039666673	10.24897734	231.0594793	5324.313303	78.41406314	31.9598974	0.466774265	5101.241423	136.8319507
	4	3 1	5	7	146.3522795	22.79723204	70.00015153	503.5015395	0.030877889	9.306648981	214.3241148	5175.295924	89.47191474	27.73243521	0.441607513	5134.93889	135.7335823

In [2]: import random import pandas

Set the numb
num_wells = 50
num_bores =

Set the ra geth_range = (75, 90) phi_range = (76, 90) distance_range = (80, 800) distance_range = (75, 90) lateral_length_range = (500, 6000) stage_spacing_range = (180, 150)

Initialize an empty list to store the data
data = []

Generate random data for each well bore for well in range(1, num_wells + 1): for bore in range(1, num_bores + 1): neth = random.uniform(*neth_range) phi = random.uniform(*spt_range) sg = random.uniform(*sgt_range)

distance = random.uniform(*distance_range)
laplacian = random.uniform(0.9 * neth, neth)
dip = random.uniform(*dip_range)
delta_height = random.uniform(0.1 * neth, 0.5 * neth)

sum_prop_value = random.uniform(0.8 * neth * distance, 1.2 * neth * distance) ol00 = random.uniform(*og100_range) ter_saturation = random.uniform(0.1 * sg, 0.8 * sg) ssure_gradient = random.uniform(0.1 * sg, 0.2 * sg)

= random.uniform(0.1 * neth * phi = sg = distance, 0.3 * neth * phi * sg = distance)
ral_length = random.uniform(+stage_spacing_range)
_spacing = random.uniform(+stage_spacing_range)

end the generated data to the list
append[\well, bore, neth, phi, sg, distance, laplacian, dip, delta_height,
 sum_prop_value, og100, water_saturation, pressure_gradient, eur,
 lateral_length, stage_spacing])

© Create DataFrame from the generated data columns ('Weil', 'Weil', 'Weil', 'Weil', 'Sg (%)', 'Distance (ft)', 'Laplacian', 'Dip (degrees)', 'Delta Height', 'Sum of Prop Value', 'DG100 (%)', 'Water Saturation', 'Pressure Gradient', 'EUR (MMbbl)', 'Lateral Length (ft)', 'Stage Spacing (ft)'] od.DataFrame(data, columns=columns)

d Save the DataFrame as a CSV file
df.to_csv('oil_wells_data.csv', index=False)

Feature Engineering

Feature engineering transforms raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data.

Optimize Well Spacing: Data Sculpting

Optimize Well Spacing: Feature Engineering

Optimize Well Spacing: Machine Learning Steps

Optimize Well Spacing: Model Deployment

Module 04 Machine Learning Techniques: Supervised and Unsupervised in E&P

MODULE 04

It's worth noting that a combination of supervised and unsupervised techniques, known as semi-supervised learning, can also be employed in situations with limited labeled data. This allows leveraging labeled and unlabeled data to train models and make predictions.

The choice between supervised and unsupervised techniques depends on the specific objectives of the analysis, the availability of labeled data, and the nature of the exploration and production data. Combining these techniques can often provide comprehensive insights and support decision-making in the oil and gas industry.

Supervised Machine Learning: Machine learning techniques require labeled data, where the input features and corresponding output labels are known. These techniques are commonly used in exploration and production data analysis for prediction, classification, and regression tasks.

Unsupervised Machine Learning: Unsupervised machine learning techniques do not require labeled data and are used to discover patterns, relationships, or structures within the data. These techniques can be useful in exploring and producing data analysis for data exploration, clustering, and dimensionality reduction.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 04

Machine Learning Techniques: Supervised and Unsupervised in E&P

LEARNING OBJECTIVES

- ➤ GOAL01: Machine Learning Fundamentals: Classification Clustering
- ➤ GOAL02: ML and DL Algorithms: Best Practices
- ➤ GOAL03: Modeling Limitations
- ➤ GOAL04: Model Selection Criteria

Regression Classification Clustering

Classification

Popular Classification Algorithms:

- Logistic Regression
- Naive Bayes
- K-Nearest Neighbors
- Decision Tree
- Support Vector Machines

Classification Clustering

K-Nearest Neighbor in one picture:

Classification Clustering

Determining Optimum Number of Clusters for an Upstream Analysis

Classification

The diagonal of the matrix presents the percentage of lithology classes that are correctly classified

ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms	Application	Advantages	Disadvantages
ANN Artificial neural networks MLP multi-layer perceptron FF feed forward RBF radial basis function CN convolutional FN functional PN probabilistic	Regression/ classification/ clustering	Learning algorithms are simple With available data it can superior any other model Does not depend on linearity of any function Can be used for problems which are hard or not practical to get a formula for	They are "black box" in nature so it is not easy to be understood or interpreted Lack the ability of generalization as they are exposed to overtraining and might memorize specific data For small datasets, the predictions are not acceptable
		ANN can be used for tasks that linear programs cannot handle Due to the parallel nature of the networks, they can proceed without problems even if an element fails They can learn from experience and avoid reprogramming Applicable in most problems	Neural networks need training to be used The architecture is different from problem to another For big networks, the training and processing time is high
		It is tolerant to faults Can learn from experience Effect of small changes is minor	Needs parallel processing abilities
		Handle nonlinear data Excellent in fitting applications	Exposed to overfitting Can be trapped in local optimum solution Consumes large time in training

ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms	Application	Advantages	Disadvantages
FL Fuzzy logic	Classification/clustering	Quick, easy, strong and effect of environment changes is minor Gives a combination of numeric and symbolic picture of systems Can handle problems with strict conditions or even without exact solution Can be described with few data points or approximated datasets	If mathematical model is existing, FL is used only in case of low computational capabilities Not easy to prove the system characteristics as it lacks mathematics
		Simple reasoning, application and can deal with uncertainties and nonlinearity	Lacks robustness
		It is able to detect hyperplane of optimal separation Deals with higher degrees of dimensionality Its kernels can learn precise concepts as they have infinite Vapnik–Chervonenkis dimension Works well usually	Positive and negative examples need to be used to train the model Kernel function choice needs care Consumes memory and computation time Suffers from numerical stability issues while solving the constraint QP

ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms	Application	Advantages	Disadvantages
SVM Support vector machine	Regression/ classification/ clustering	Provide high accuracy classifiers.Overfitting occurrence is little, excellent in dealing with noise Preferred for text classification applications that are normally high dimensional problems Intensive memory consumption	It is a binary classification technique, so it needs pairwise classification to perform multi-class classification that means one class against all others, for all classes Runs slowly and require high computational power
		Get useful information from little datasets Has generalization capabilities	Low performance with big data or multi-classification tasks Kernel function parameters affect the performance
		Easy to understand and can be interpreted Data preparation is fast Can deal with numerical and categorized data It has white box interpretable model Statistical tests can be used to validate the model accuracy Robust Efficiently handle huge data in a little time	Even for most simple concepts, the learning of an optimal DT is known as NP-complete Complex DT models cannot generalize the data well Fails to learn some concepts as it is not easy for DT to express them
DT Decision tree	Regression/ classification/ clustering	Nonlinearity among parameters do not affect the performance of DT Interpretable and explainable	Complex Duplication might happen for same sub-tree of other paths
		In case of few predictor variables, it is easy to understand Can be used in building models that contain special data types, such as text	Have huge storage requirements The similarity function selection used to correlate instances is sensitive No clear principles for selecting k, excluding over cross- validation or alike Computational rate is high
		Classes do not need to be linearly divisible Modest and powerful	Tends to disregard the attributes importance Sluggish and expensive

14

ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms	Application	Advantages	Disadvantages
KNN K nearest neighbors	Classification/ clustering	Understandable and easy to implement technique Can be trained quickly Robust in case of associated noise It is mainly well suited for multimodal classification	Sensitive to local Data structure Memory restriction Supervised type of learning Sluggish algorithm
		High performance Arise variable measures	Computationally expensive Overfit issues
		Quick in implementation Less complex	Does not depend on variables Disregards original geometry of data
RF Random forest	Classification/ clustering	Robust with noisy data Can learn in increments	Low performance with attribute-related training data
K-means	Classification/ clustering	Data point is allowed to exist in different clusters Normal representation of the behavior of genes	Need to define number of clusters c Membership cutoff value has to be set Initial assignment of centroids affects the clusters
		Changeable model that can adapt different dataset distribution If training data increase, the parameters number does not change	In some cases, the convergence in slow
Fuzzy C-means	Classification/ clustering	Modest and easy to-understand the working algorithm As a topological clustering unsupervised technique, it can deal with dataset nonlinearity Unique in directionality reduction being able to convert high dimensions problem to 1–2 dimensions	Time consuming technique

ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms	Application	Advantages	Disadvantages
RNN Recurrent neural network	Regression/ classification/	Can record the information as activations with time Manipulate consecutive information that are random in length	It is affected by the gradient vanishing type Not able to be stacked within extra deep modeling
CNN Convolutional neural network	Regression/ classification/ image processing	Able to detect relevant features only from given dataset Same parameters can be utilized in different problems	Tuning of parameters is difficult Requires large amount of data
		Quick training	Quality might be low
GAN Generative adversarial network	Regression/ classification/	No approximation techniques needed Does not require several entries in the samples	Unstable training Generating discrete data is difficult
DBN Deep belief network	Regression/ classification/	Layer by layer strategy of learning makes it capable of learning the features Deals with non-labelled data and can be safe from the overfitting and underfitting issues	Some pre training algorithms decrease the performance as the input data is clamped Run time is long
		Not affected by the fragmentation of training data thus it reduces over-smooth problem	Lower output quality

Limitations of AI Models

Limitation	Reason	Solution
Overfitting	Lack of an appropriate amount of data to be used for training	Using the ratio of input data points to the total number of network weights used by the connections (ρ)
Coincidence	Getting a good match by coincidence for a specific dataset	Using discriminant analysis
Overtraining	When the error keeps decreasing by updating the model structure and the model can be more complex to fit a specific dataset	A training methodology that is named "early stopping" can be used Reinforcement learning with in-stream supervision, for example, the generative adversarial networks
Data availability	Sometimes the gathered data is limited	Single-shot learning in which the AI model is pre-trained on a similar dataset and then is enhanced with experience
Interpretability	The single connections in the models do not affect alone but the whole model connections combined affect results	Local interpretable model and its agnostic explanations The generalized additive models method
Generalization	Model failure in the circumstances different from the set of circumstances, which were used in building the original model	Additional resources are to be utilized for training new datasets
Bias	The nature of black-box models makes it to be prone to biases	Using model-independent perturbations

Model Selection Criteria

Vocabulary

When selecting a model, we distinguish 3 different parts of the data that we have as follows:

Training set	Validation set	Testing set
Model is trainedUsually 80% of the dataset	 Model is assessed Usually 20% of the dataset Also called hold-out or development set 	Model gives predictionsUnseen data

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen test set. These are represented in the figure below:

Model Selection Criteria

Regularization

The regularization procedure aims at avoiding the model to overfit the data and thus deals with high variance issues. The following table sums up the different types of commonly used regularization techniques:

Model Selection Criteria

Bias/Variance Tradeoff

The simpler the model, the higher the bias, and the more complex the model, the higher the variance.

Module 05 Deep Learning Techniques: Upstream E&P Deep Learning

MODULE 05

Deep learning techniques require substantial amounts of labeled data and significant computational resources for training. However, they have demonstrated remarkable capabilities in handling complex data and achieving state-of-the-art performance in various tasks. It's essential to carefully design deep learning architectures, preprocess the data, and finetune the models to extract the most meaningful insights from exploration and production data.

Deep learning techniques have gained significant attention in recent years for their ability to handle complex and highdimensional data in various domains, including exploration and production in the oil and gas industry. Deep learning models, particularly neural networks with multiple layers, can automatically learn hierarchical representations from the data, enabling them to capture intricate patterns and relationships.

Here's an overview of deep learning techniques commonly applied to exploration and production data:

- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Autoencoders
- Generative Adversarial Networks (GANs)

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 05

Deep Learning Techniques: Upstream E&P Deep Learning

LEARNING OBJECTIVES

- ➤ GOAL01: Deep Learning Fundamentals
- ➤ GOAL02: Deep Learning Seismic Data
- ➤ GOAL03: Deep Learning Architectures used in Upstream

Deep Learning Techniques

Demystifying Deep Learning

We shall focus on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) architectures.

Deep Learning Techniques

Demystifying Deep Learning: CNNs

Demystifying Deep Learning: RNNs

An RNN model attempts to optimally generate features from past events (remember past events) and use these features along with conventional model inputs to predict a series of interval targets or a sequence of categorical targets.

Long Short Term Memory Networks (LSTMs)

A CNN-based framework to classify anticlines structures on seismic data

Seismic Images

Bright Spot

- From seismic image pixels, the first hidden layer identifies the edges
- From the edges, the second hidden layer identifies the corners and contours
- From the corners and contours, the third hidden layer identifies the parts of objects
- Finally, from the parts of objects, the fourth hidden layer identifies whole objects

Dim Spot

Polarity Reversal

Convolutional Neural Network

4D Seismic Inversion - DNN

LSTM - Recurrent Neural Network (RNN)

An LSTM RNN uses a more sophisticated network structure in which past information can be remembered or forgotten

Many of the recent advances in deep learning have been applied to LSTM RNN models enabling significant breakthroughs in sequence learning

Recurrent Neural Network (RNN)

Petrophysical property estimation from seismic data using recurrent neural networks

The proposed workflow with 2 layers of GRU and a regression layer

CNNs +RNNs

CNNs +RNNs: Weekly Production Forecasting

Module 06 Case Studies: Completion Strategy and Automated Tops

MODULE 06

This Module introduces two case studies based on a data-driven analytical methodology to address a business value proposition for a completion strategy optimization in an unconventional reservoir in the USA. We shall follow the SEMMA process introduced in Module 02 under Process and Methodology.

I shall share a Society of Petroleum Engineers technical paper detailing this case study. And there is a demonstration of the case study in third-party analytics software.

The second case study under investigation in this Module is Tops Bypassed Pay. We shall discuss an automated workflow with domain input to identify the tops of historical datasets generated from well logs. The analytical workflow follows a SEMMA process to cleanse data, cluster well data, and select reference wells that provide labeled information to train machine learning techniques to automate major tops of a field under study.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 06

Case Studies: Completion Strategy and Automated Tops

LEARNING OBJECTIVES

- ➤ GOAL01: Completion Strategy Optimization
- ➤ GOAL02: Automated Tops Identification Bypassed Pay

Completion Strategy Optimization

How do you analyze risk and uncertainty, strengthen confidence in completion strategies, and quantify the impact of exploitation plans on attaining predefined targets?

Dataset for ML Workflow:

General Well Data	Location, Section, wellbore diagrams 211 wells, 2399 stages	Geological Parameters	Formation Petrophysical Features	Operational Parameters
Stimulation Data	Stimulated treatment data 149 wells	Distance from the global maximum location at the	Sg Gas saturation	Total volume of proppant allocated for each wellbore
Production Data	•12 months of cumulative production data •Gas and water rates of production	peak of the anticline		stage
Production Logging tool Data	•119 wells, 166 PLTs, 32 wells with multiple PLTs	The slope of the structure gradient (1 st derivative)	Porosity	Flowback initiation timing of stimulation
Formation Physical Property Data	•412 wells, distribution analysis of petrophysical sandstone data	Curvature (2 nd derivative)	Net feet of petrophysical pay	
Flowback Data	•129 wells	True vertical depth from the top of the structure		

Completion Strategy Optimization

Petrophysical Parameters

Completion Strategy Optimization

Petrophysical Parameters

Completion Strategy Optimization

Geological Parameters

Geological Parameters

Stage

- Important to map Business Problem to a Data Mining Problem
- Critical Workflows: Data Management and Dimensionality Reduction
- SEMMA Process enables **repeatable** and **scalable** soft-computing methodologies
- Exploratory Data Analysis: Get a feel for your data!
- Model and Score
- Operationalize: Avoid academic exercise!
- Ensure new data re-trains supervised models
- 49 stages selected for proppant increase resulted in incremental 1,962 Mscf/d at the cost of \$2.23 million
- Economic ROI favorable at gas prices > \$3.0 Mscf/d
- Breakeven at \$2.60 Mscf/d

Tops Bypassed Pay

Rock Strata: Tops and Bottoms of Geologic Layers

There are three basic types of contacts:

- 1. Depositional contacts, where a sediment layer is deposited over preexisting rock.
- 2. Fault contacts, where two units are juxtaposed by a fracture on which sliding has occurred.
- 3. Intrusive contacts, where one rock body cuts across another rock body.

			well_id	Distance to Cluster Seed	MD_Min	MD_Max	Score %
			177170036000	1.18E-15	3030	15961	77.8
	Identify Maj	or and Minor Tops in hours	177172003600	1.04E-15	2585	12692	81.9
	Quantify uncertainty in Tops	177140034500	9.15E-16	2498	11977	82.0	
		177144001000	1.41E-15	3204	11950	75.6	
			177140034001*	1.20E-15	10422	11949	N/A
			177140034400	6.04E-16	2528	11901	82.0
			177140034000	6.74E-16	2555	11875	82.0
			177140017000	6.80E-16	3048	11776	81.9
	Identify Key Well Logs	Automate Well	Produce Si Well Lo	ngle g			
	Identify Key Well Logs	Automate Well Logs Analysis	Produce Si Well Lo Datama	ngle g rt			

Tops Bypassed Pay

POR: Porosity Sw: Water Saturation EGR: Gamma Ray **CNLC: Compensated Neutron Porosity**

BHC: Sonic

TSPR, TSSS, TSSW: Thomas-Stieber Logs Vsh: Shale Volume

- Measurements taken at a regular step (Redwater: 3 to 20 cm, depending on the well; Bay Marchand: 0.5 ft)
- Each log has several measured and derived variables
- Bay Marchand has only MD, POR, SW, and VSH

Variable Name	Description	Туре
MD	Measured Depth	
ВНС	Borehole Compensated Sonic	Primary
CNLC	Compensated Neutron Porosity	Primary
EGR	Corrected gamma ray	Primary
TSPR, TSSS, TSSW	Thomas-Stieber logs	Derived
VSGC	Gamma ray corrected shale volume	Derived
POR	Porosity	Derived
SW	Water saturation	Derived
VSH	Shale volume	Derived

Tops Bypassed Pay

9 clusters with 23 to 140 wells assigned to a different cluster

Number of wells covered: 418 out of 1182 (35.4% of the data)

All but one cluster show results above 60% (67.8% to 91.3%)

Overall prediction score: 70.0%

Training wells per cluster: 1 to 3

Total training wells: 14 (3.4% of the data)

Cluster #	Cluster size	Training wells	Score, %
1	140	3	52.3
2	134		
3	54	2	80.4
4	48	2	74.1
5	35	1	80.6
6	29		
7	29	1	89.3
8	29	1	81.1
9	28	2	67.8
10	27		
11	27	1	70.4
12	27		
13	26		
14	23	1	91.3

Tops Bypassed Pay

•	 Measured Depth (MD) to a top of a rock layer SME identified major rock layer tops 				Above	
•	 Analytics automated rock layer tops Reduced SME decision cycles from 6 months to 4 days 				CLRD	
•	Accuracy > 70% Tops Automated Picker identified potential drilling locations to exploit bypassed pay				SSPK	
		Well ID 1W40552030050000	Formation Name	MD (m) 416.14		BFS
		1W40552030050000 1W40552030050000	SSPK BFS	572.46 646.59		VKNG
		1W40552030050000 1W40552030050000	VKNG JLFU	691.88 719.73		JLFU
		1W40552030050000	MNVL	733.86		

Module 07 Case Studies: Seismic Attributes

MODULE 07

This Module introduces two case studies based on a data-driven analytical methodology to address a business value proposition using seismic attributes. We shall follow the SEMMA process introduced in Module 02 under Process and Methodology.

The first technique studies Self-Organizing Maps (SOMs), an unsupervised neural network algorithm. SOMs are a valuable tool for exploratory data analysis and visualization, which map from a high-dimensional input space to a low-dimensional lattice, preserving the topology of the data set as faithfully as possible. We shall identify critical features to optimize gas production in an unconventional reservoir.

The second case study under investigation in this Module is Acoustic Impedance. We shall discuss an automated workflow with domain input to identify important historical datasets that can predict the Acoustic Impedance based on five seismic attributes. The analytical workflow follows a SEMMA process to cleanse data, perform Exploratory Data Analysis, and generate Tukey diagrams to understand feature relationships and statistical predictive power.

We shall close with a demonstration using a Jupyter Notebook to generate Acoustic Impedance logs.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

- MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology
- MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques
- MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting
- MODULE 11 Digital Twins: Upstream E&P
- MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 07

Case Studies: Seismic Attributes

LEARNING OBJECTIVES

- ➢ GOAL01: Case Studies Seismic Attributes
- ➤ GOAL02: Self-Organizing Maps (SOMs)
- ➢ GOAL03: Case Studies Acoustic Impedance

Classifying Multiple Seismic Attributes

Unsupervised Neural Networks: Self-Organizing Maps

In this research, unsupervised seismic interpretation from multi-attribute data was analyzed by using an ML technique: SOMs.

Classifying Multiple Seismic Attributes

Classifying Multiple Seismic Attributes

Classifying Multiple Seismic Attributes

- Reservoir geology
 - Thickness and Lateral extent
 - Mineralogy
 - · Porosity and Permeability
- Geochemistry
 - Total Organic Content (TOC)
 - Maturity and Kerogen Richness
- Geomechanics
 - Acoustic impedance inversion
 - Young's Modulus
 - Poisson's Ratio (Vp/Vs)
- Faults, Fractures, and Stress regimes
 - Coherency and Curvature
 - Fault Volumes
 - Velocity Anisotropy
 - Stress maps

- Pre-Stack Time Migration Traces
 - Attenuation
 - Bandwidth
 - Envelope slope
 - Instantaneous
 - MuRho
 - S-Impedance
 - Trace envelope
 - Young's brittleness
 - Poisson's Ratio
 - Poisson's brittleness
 - Shear Impedance
 - P- impedance
 - Brittleness coefficient
 - Spectral decomposition volumes
 - Instantaneous attributes

Classifying Multiple Seismic Attributes

Maplet <u>Output Layer</u>

Classifying Multiple Seismic Attributes

Self-Organizing Maps: Unsupervised NN: Qg100 Maplet

Classifying Multiple Seismic Attributes

Self-Organizing Maps: Unsupervised NN: Bulk Modulus Maplet

Classifying Multiple Seismic Attributes

Self-Organizing Maps: Unsupervised NN: Instantaneous Phase Maplet

Classifying Multiple Seismic Attributes

Self-Organizing Maps: Unsupervised NN: Instantaneous Frequency Maplet

Classifying Multiple Seismic Attributes

Self-Organizing Maps: Unsupervised NN: VpVs Maplet

Acoustic Impedance Estimation from Seismic Data Using ML in Well-Log Resolution

Variable/Feature	Description
Depth	Depth in well (m)
Amplitude	Seismic Trace Amplitude
AI_Log	Acoustic Impedance calculated from Sonic and Density logs
Derivative2	Second time derivative of the input seismic volume
QuadrA	Quadrature Amplitude attribute; imaginary part of the analytic signal calculated by phase shifting original trace by 90 degrees
TraceGrad	Gradient along the trace is generated.
GradMag	Magnitude of the instantaneous gradient.
IFreq	Instantaneous frequency, time derivative of phase angle
Al_Inv	Acoustic Impedance Inversion determined from 50 well logs and 3D seismic cube at well locations

Seismic Attributes

Seismic Attributes: Pair plot

Case Studies Seismic Attributes: Descriptive + Normalization/Scaling + Neural Network

<u>Module 08</u> Case Studies: Drilling Program & Completion Study & Virtual Assistant for Fluids and Lithology

MODULE 08

This Module introduces two case studies based on a data-driven analytical methodology to address a business value proposition to optimize drilling and completions and identify fluids and petrophysical properties in an onshore field. We shall follow the SEMMA process introduced in Module 02 under Process and Methodology.

The first case study details a repeatable and scalable data-driven analytical process to optimize drilling and completion strategies in a brownfield with upstream historical datasets.

The second case study under investigation in this Module is Lithology-Fluids and Rocks pattern recognition. We shall discuss an automated workflow with domain input to identify important historical datasets that can predict an African asset's rocks and fluid contents. The analytical workflow follows a SEMMA process to cleanse data, perform Exploratory Data Analysis, and generate Tukey diagrams to understand feature relationships and feature engineering for derived variables and statistical predictive power.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 08

Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

LEARNING OBJECTIVES

- ➤ GOAL01: Case Studies Drilling and Completion in Unconventional Reservoirs
- ➤ GOAL02: Case Studies Fluids and Lithology Virtual Assistant

Drilling Optimization Process Workflow

Drilling Optimization Process Workflow

Drilling Optimization Process Workflow

Explainable AI

Drilling Optimization Process Workflow

Drilling Optimization Process Workflow

Drilling Optimization Process Workflow

Lithology-Fluids Pattern Recognition

- Well Logs best suited for Lithofacies Classification?
- Classify Lithofacies based on Supervised Learning

Support Vector Machine Gradient Tree Boosting Artificial Neural Network Random Forest

• Predicting Stratigraphic Units from Well Logs

Lithology-Fluids Pattern Recognition

Manual interpretation of lithofacies from wireline log data is traditionally performed by an expert, can be subject to biases, and is substantially laborious and time-consuming for large datasets.

Automating the facies classification process using machine learning is a potentially intuitive and efficient way to facilitate facies interpretation based on large-volume data. An expert traditionally performs manual interpretation of lithofacies from wireline log data.

The input parameters used to train AI models include LWD, MWD, Drilling Data, Gas Components data.

Data will be from multiple reservoirs, fields, formations, wells

Data would be for more than 75 wells.

Actual Lithology and fluid tags would be identified and used as the target variable.

Additional Derived variables would be created that would be able to explain the lithology facies better.

Different classes of lithology facies and fluid-type relationships will be modeled.

The automated Machine Learning process to predict field pattern type recognition

The AI assistant will suggest the best approach to follow to the domain experts.

Provide workflow automation that reduces work time and raises efficiency with real-time interpretation.

Lithology-Fluids Pattern Recognition

Typical Input Data: Facies-Fluids: *Feature Engineering*

Logs While Drilling (LWD)	Gas Components	Drilling Params.
Gamma Ray	Total Gas (TG)	Weight on Bit (WOB)
Resistivity Shallow	Methane (C1)	Rate of Penetration (ROP)
Resistivity Deep	Ethane (C2)	
Neutron	Propane (C3)	
Density	IsoButane (iC4)	
	NormalButane (nC4)	
	IsoPentane (iC5)	
	NormalPentane (nC5)	

Table 1 - LWD Curves

Derived Forumla LHR C1+C2/C3+iC4+nC4+iC5+nC5 CH iC4+nC4+iC5+nC5/C3 WH C2+C3+iC4+nC4+iC5+nC5/C1+C2+C3+iC4+nC4+iC5+nC5 C1/C2 C1/C2 C1/C3 C1/C3 C2/C3 C2/C3 %C1 (C1/C1+C2+C3+iC4+nC4+iC5+nC5)*100 %C2 (C2/C1+C2+C3+iC4+nC4+iC5+nC5)*100 %C3 (C3/C1+C2+C3+iC4+nC4+iC5+nC5)*100 %C4 (iC4+nC4/C1+C2+C3+iC4+nC4+iC5+nC5)*100 %C5 (iC5+nC5/C1+C2+C3+iC4+nC4+iC5+nC5)*100

Table 2 - Derived Features

IPTC-19701-MS

Artificial Intelligence and Machine Learning Techniques Provide Operations Geologists With an Automated and Reliable Lithology-Fluid Pattern Recognition Assistant: A Case History in a Clastic Reservoir in West Africa

Davide Baldini and Luca Piazza, ENI SpA; Luca Barbanotti, SAS Institute

Lithology-Fluids Pattern Recognition

Fluid and rock identification from well log analysis – LWD and MWD

Lithology-Fluids Pattern Recognition

Fluid and rock identification from well log analysis – LWD and MWD

Module 09 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 09

This Module introduces the six principles of forecasting in a time-series dataset.

We shall implement these principles in the case study to optimize production data collected in a brownfield.

The SEMMA process takes on a journey to analyze temporal data using several time-series statistical and machine-learning methods. The well, reservoir, and field production forecasting uses spatial and temporal data to optimize the reengineering of a brownfield.

We shall show the use of both supervised and unsupervised techniques. And we shall introduce a deep neural network architecture called a Recurrent Neural Network for time-series analysis. RNNs are discussed in Module 05.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 09

Case Studies: Forecasting Principles & Production Forecasting Techniques

LEARNING OBJECTIVES

- ➤ GOAL01: Forecasting Six Principles
- ➤ GOAL02: Forecasting Techniques & Forecasting Data-Driven Workflows
- ➤ GOAL03: Case Study: NOC Re-engineering Brownfield

Six Principles of Forecasting

- 1. Forecasting is a stochastic problem
- 2. All forecasts are wrong
- 3. Some forecasts are useful
- 4. All forecasts can be improved
- 5. Forecast accuracy is never guaranteed
- 6. Having a second opinion is preferred

Production Forecasting

A time series is a sequence of observations Y1, ... Yt-1, Yt, where the observation at time t is denoted by Yt.

Rule Induction for TS Forecasting

- Exponential Smoothing (ES)
- Auto-Regressive Integrated Moving Average
 - (ARIMA)
 - Random Walk (RW)
 - Neural Networks (NN)

Exponential Smoothing

Simple and low cost

- Less Data Memory Storage
- Fast Computational Speed

Not as accurate:

- ARIMA
- FFNN

- Simple Exponential Smoothing (SES) ٠
- Double Exponential Smoothing (DES)
- Triple Exponential Smoothing (Holt-Winters Method) ٠

Oil Production in Aramco from 1996 - 2013

9

AutoRegressive Integrated Moving Average

Artificial Neural Networks - ANNs

Deep Gated Recurrent Unit Network (DGRU - Deep Learning Neural Networks)

The proposed model can handle the temporal dependencies of complex time-series data at a deep level. It consists of stacks of several layers, where each layer solves part of the task and passes the results to the next layer. Since each layer combines the learned representations of the previous layer and feeds them to a higher layer, better representations of the data can be achieved in the model.

Repeatable and Scalable Methodology for Forecasting

Production Forecasting

Five Basic Steps in a Forecasting Task

Production Forecasting

Time-Series Data Forecasting

Well Production Workflow

Data-driven analytical workflow to forecast oil/gas production in a well.

Production Forecasting

CLUSTER ANALYSIS: WELL PROFILES

Cumulative oil or gas production Water cut (Percentage determined by water production/liquid production) B exponent (Decline type curve) Initial rate of decline Initial rate of production Geomechanics and Petrophysical Properties Geological Parameters Operational Parameters Completions Design

Production Forecasting – Let's "stationarize' our temporal data

Module 10 Time-Series Analysis and Production Forecasting

MODULE 10

This Module introduces a case study to optimize the technical potential of a National Oil Company (NOC.) Technical Potential (TP) forms the basis for future expectations by defining what is achievable and thus highlights the gap between potential performance and what is realized in hydrocarbon production. This knowledge transforms into initiatives that drive the processes for minimizing the gap. Assessment and forecasting TP workflows provide the appropriate tools for NOCs to drive the operator contractors towards better performance targets.

We shall demonstrate a case study to forecast the fluid rates in a brownfield, analyzing historical production data of wells across multiple reservoirs. The proposed methodology is a Deep Learning Long-Short Term Memory architecture.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 10

Case Studies: Time-Series Analysis and Production Forecasting

LEARNING OBJECTIVES

- ➤ GOAL01: Time Series Patterns Used in Forecasting
- ➤ GOAL02: Case Study: Forecasting Well Data from the Volve Field
- ➤ GOAL03: Case Study: Production Forecasting using DL Models
- ➤ GOAL04: Case Study: Drilling Time series identifying Lost Circulation

Well Production Forecasting – Volve Field

Feed-Forward Neural Network

A Feed-Forward Neural Network (FNN) is an ML algorithm formulated based on biological neural network functionalities. FNN comprises many calculating units known as artificial neurons or nodes. It has been demonstrated to be more successful in approximating the complex non-linear relationships between input and output vectors of a database than the conventional regression methods.

Support Vector Regression is a subset of a Support Vector Machine for regression analysis.

The fundamental idea regarding the mechanism of **Particle Swarm Optimization** is that each particle corresponds to a potential solution to an optimization problem.

Well Production Forecasting – Volve Field

Training and Blind Validation Results

Datasets	Models	R ²	RMSE	Datasets	Models	R ²	RMSE
Training	SVR-TE SVR-PSO FNN-BP FNN-PSO Simple RNN	0.9951 0.9944 0.9948 0.9945 0.9945	13.88 14.68 14.00 14.92 14.46	Blind Validation	SVR-TE SVR-PSO FNN-BP FNN-PSO Simple RNN	0.9476 0.9644 0.9538 0.9574 0.9665	7.34 6.04 6.89 6.61 5.87
Validation	GRU SVR-TE SVR-PSO FNN-BP	0.9962 0.9962 0.9880 0.9889 0.9911	12.03 12.17 21.37 20.79 19.13 -		LSTM GRU	0.9712 0.9700	5.45 5.56
Best	FNN-PSO Simple RNN LSTM GRU	0.9923 0.9921 0.9910 0.9940	15.75 18.27 19.51 15.75	Datasets All	Models SVR-TE SVR-PSO	R ² 0.9935 0.9952	RMSE 16.52 14.21
Testing	SVR-TE SVR-PSO FNN-BP FNN-PSO Simple RNN	0.9764 0.9936 0.9936 0.9898 0.9941	30.83 16.61 16.44 19.91 15.37	Best	FNN-BP FNN-PSO Simple RNN LSTM GRU	0.9956 0.9952 0.9957 0.9961 0.9964	13.65 14.15 13.51 12.69 12.28
	LSTM GRU	0.9922 0.9915	17.64 - 18.24				

Production Forecasting

Data Input Space

- · Location data for each well
- · Historical production of oil, water and gas for each well
- Historical pressures in some wells allow to build an average behavior for each reservoir
- Petrophysical data

Alias	Well	Reservoir	Date	Davs	Oil Rate BOPD	Water Rate BWPD	Gas Rate MSCED	K mD	h ft	Depth avg. ft	P nsi	Pwf nsi
BCS0006:M06	BCS0006	M06	19633	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19664	15	299.9	0.9	62.9	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19694	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19725	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19756	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19784	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19815	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19845	0	0	0	0	3.206	189.3	9932	4950	4950
BCS0006:M06	BCS0006	M06	19876	4	346.3	4.5	103.5	3.206	189.3	9932	4950	4806
BCS0006:M06	BCS0006	M06	19906	4	377.3	5	112.8	3.206	189.3	9932	4950	4793
BCS0006:M06	BCS0006	M06	19937	16	391.6	0.8	48.3	3.206	189.3	9932	4950	4787
BCS0006:M06	BCS0006	M06	19968	20	545.9	1.1	74.4	3.206	189.3	9932	4950	4723

- · Prepare time series data for training an RNN forecasting model
- Implement an RNN model to predict the next 3 steps ahead (time t+1 to t+3) in the time series
- Use a simple encoder-decoder approach in which the final hidden state of the encoder is replicated across each time step of the decoder
- · Enable early stopping to reduce the likelihood of model overfitting
- · Evaluate the model on a test dataset

	Date	K, mD	h, ft	P, psi	Pwf, psi
9071	41944	1.24	77.0	2977	1907
9072	41974	1.24	77.0	2976	1687
9073	42005	1.24	77.0	2974	683
9074	42036	1.24	77.0	2973	921
9075	42064	1.24	77.0	2972	662

Define input and outputs for the model

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 1024)	6144
dense_1 (Dense)	(None, 512)	524800
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 128)	32896
dense_4 (Dense)	(None, 3)	387

Total params: 695,555 Trainable params: 695,555

Non-trainable params: 0

Production Forecasting: Hyperparameters

Well Production Workflow: Predictive Accuracy Indicators

Data-driven analytical workflow to forecast oil/gas production in a well.

"The function we want to minimize or maximize is called the objective function or criterion. When we are minimizing it, we may also call it the cost function, loss function, or error function.".

I use MSE: In the case of regression problems where a quantity is predicted, it is common to use the mean squared error (MSE) loss function instead. This returns a very good accuracy for your model.

- · Maximum A Posteriori (MAP), a Bayesian method
- Maximum Likelihood Estimation (MLE), frequentist method

It may be more important to report the "accuracy" and "root mean squared error" (RMSE) for models used for classification and regression, respectively.

Loss function evaluates/diagnoses model learning Metric measures model accuracy

- Loss: Used to evaluate and diagnose model optimization only.
- Metric: Used to evaluate and choose models in the case study context.

Compile and Fit the model to the training data

deep model.fit(X train, y train, epochs=1000, shuffle=True, verbose=2

Production Forecasting: Hyperparameters

Optimizer

The optimizer performs the necessary computations to adapt to the network's weight and bias variables during training. Those computations invoke the calculation of gradients that indicate the direction in which the weights and biases must be changed during training to minimize the network's cost function.

The goal of machine learning and deep learning is to reduce the difference between the predicted output and the actual output. This is also known as a cost function or loss function. Cost functions are convex functions.

We aim to **minimize** the cost function by finding the optimized weight value. We also need to ensure that the algorithm **generalizes** well. This will help better predict the data that was not seen before.

Nadam-Nesterov-accelerated Adaptive Moment Estimation

- Nadam combines NAG and Adam
- Nadam is employed for noisy gradients or gradients with high curvatures
- The learning process is accelerated by summing up the exponential decay of the moving averages for the previous and current gradient

Production Forecasting: Oil, Gas and Water

Date

Production Forecasting: Results

	Well	Reservoir	Date	Qo, BOPD	Qw, BWPD	Qg, MSCF/D		Well	Reservoir	Date	K, mD	h, ft	Depth_avg, ft	P, psi	Pwf, psi
9071	BCS0070	M18	41944	467.636810	1478.841187	466.472656	0	BCS0006	M06	42095	3.206	189.3	9932	3070.6	2998
9072	BCS0070	M18	41974	816.668823	1209.927368	727.219116	1	BCS0006	M06	42125	3.206	189.3	9932	3067.9	2998
9073	BCS0070	M18	42005	649.015991	1453.822021	263.700012	2	BCS0006	M06	42156	3.206	189.3	9932	3065.0	2998
9074	BCS0070	M18	42036	668.285583	1070.237549	300.476562	3	BCS0006	M06	42186	3.206	189.3	9932	3062.3	2998
9075	BCS0070	M18	42064	665.108887	1468.606567	262.656342	4	BCS0006	M06	42217	3.206	189.3	9932	3059.4	2998

	Well	Reservoir	Date	K, mD	h, ft	Depth_avg, ft	P, psi	Pwf, psi	list	Completion
1440	BCS0070	M18	43770	1.24	77.0	9357	2901.093551	695	[BCS0070, M18]	BCS0070:M18
1441	BCS0070	M18	43800	1.24	77.0	9357	2899.969240	695	[BCS0070, M18]	BCS0070:M18
1442	BCS0070	M18	43831	1.24	77.0	9357	2898.811652	695	[BCS0070, M18]	BCS0070:M18
1443	BCS0070	M18	43862	1.24	77.0	9357	2897.658333	695	[BCS0070, M18]	BCS0070:M18
1444	BCS0070	M18	43891	1.24	77.0	9357	2896.583286	695	[BCS0070, M18]	BCS0070:M18

Deep Learning Time Series Analysis

Figure 02

Deep Learning Time Series Analysis

Deep Learning Time Series Analysis

Figure 01

Parameter	Units
Weight on bit (WOB)	Kilo pound (klbf)
Hook height (HKHT)	Feet (ft)
Hook load (HKL)	Kilo pound (klbf)
Torque (TQ)	Pound-foot (kft.lbf)
Stand pipe pressure (SPP)	Pounds per square inch (psi)
Flow-in rate (FLWIN)	Gallons per minute (gpm)
Flow-out rate (FLWOUT)	0-100%
Rate of penetration (ROP)	Feet per hour (ft/hr)
Revolutions per minute (RPM)	Rpm
Total mud system volume (PVT)	Barrels
Trip tank volume (TTV)	Barrels

Table 01

Module 11 Digital Twins: Upstream E&P

MODULE 11

This Module introduces case studies where Digital Twins are implemented. We shall explore the Digital Twin methodology and the various versions used in the upstream Exploration and Production (E&P) value chain.

Generative AI (GAI) is gaining traction across business verticals. We shall discuss Digital Twins from the perspective of generating or augmenting synthetic datasets for machine-learning data-driven analytical workflows in E&P.

Reinforcement Learning (RL) is a subfield of machine learning that focuses on how an agent can learn to make sequential decisions in an environment to maximize cumulative reward. It is inspired by how humans and animals learn through trial and error and interact with their surroundings. We shall compare RL with supervised and unsupervised methods.

We introduce a Reservoir Simulation case study using RL.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 11

Digital Twins: Upstream E&P

LEARNING OBJECTIVES

- ➤ GOAL01: Digital Twins Introduction
- ➢ GOAL02: Digital Twins in the O&G industry
- ➤ GOAL03: Case studies implementing Digital Twins in upstream
- ➤ GOAL04: Reinforcement Learning: A ML Technique for Digital Twins

Digital Twins: Targeted Outcomes

1. Improved performance

- 2. Enhanced predictability (reduced downtime)
- 3. Increased innovation through virtual testing
- 4. Improved collaboration and decision-making
- 5. Reduced costs (Maintenance, Labor, Raw Materials)

Digital Twin Definition

 A Digital Twin is a virtual representation of real-world entities and processes, synchronized at a specified frequency and fidelity... Digital twins use real-time and historical data to represent the past and present and simulate predicted futures....

As defined by the Digital Twin Consortium

Digital Twins

Exploration and Drilling

Digital Twins

- **Reservoir Simulation**: Digital twins can model underground reservoirs to predict how they'll behave. This aids in optimizing extraction techniques and maximizing the reservoir's yield.
- Drilling Optimization: By simulating the drilling process, companies can identify potential issues (like equipment failures or geological hazards) and adjust the drilling strategy accordingly.

Asset Performance Management

- Predictive Maintenance: Digital twins can predict when equipment might fail using sensors and real-time data. This helps companies fix problems before they happen, <u>reducing downtime</u>.
- Operational Optimization: Digital twins can model the entire operation of an asset (like an oil rig or refinery). Companies can find the most efficient way to run their operations by simulating different conditions.
- Production Optimization: Flow Simulation: Digital twins model the flow of oil and gas through pipelines and other infrastructure. This can help identify bottlenecks or inefficiencies in the system.

Real-time Monitoring and Control

- Remote Operations: Particularly useful in offshore or remote sites, digital twins allow operators in centralized control rooms to monitor and control equipment from a distance.
- System Performance: By continuously comparing the digital twin's performance with the real-world asset, discrepancies can be spotted immediately, leading to quick interventions.

Digital Twin in the Hydrocarbon Industry

Digital Twin (DT) modeling is the foundation for the next generation of realtime production monitoring and optimization systems. It is a solution that boosts productivity by combining information, simulation, and visualization throughout the entire value chain of an operational firm, from subsurface equipment to central production plants.

A digital, animate, dynamic ecosystem – comprised of an interconnected network of software, generative & non-generative models, & (historical, real-time, & synthetic) data – that both mirrors & synchronizes with a physical system

Digital twins simulate "what-if" scenarios & stress test systems in the digital world to prescribe actions that optimize the physical world – to improve the lives of individuals, populations, cities, organizations, the environment, systems, products, & more

Digital Twin in the Risk Assessment Process

Digital twin standard workflow

Generative AI – Digital Twin

Strategies to Achieve a Digital Twin Model

Digital Twin of a Well

Digital Twin – Smart Water Optimization Workflow

What is Reinforcement Learning?

Reinforcement learning is learning what to do — how to map situations to actions — to maximize a numerical reward signal. The learner is not told which actions to take but must discover which ones yield the most reward by trying them. In the most interesting and challenging cases, actions may affect the immediate reward, the next situation, and all subsequent rewards. These two characteristics — trial-and-error search and delayed reward are the two most important distinguishing features of reinforcement learning.

Reinforcement vs. Supervised/Unsupervised

Reinforcement Learning

Objective: choose "best" actions

Environment is uncertain

Training involves exploring the environment

Training process involves determining the "best" policy

Explicit dependency of rewards on previous actions

Supervised/Unsupervised Learning

Objective: Predict, classify or simplify

Environment is known (x is known)

Training involves finding patterns in data or is entirely absent

Training process involves fitting the "best" model

Individual points are independent of each other

Deep Reinforcement Learning (DRL)

Digital Twins

Deep Reinforcement Learning for Petroleum Reservoir Optimization

Digital Twins

<u>Module 12</u> PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

MODULE 12

This Module introduces PINNs, Physics-Based Neural Networks., recently proposed for solving partial differential equations. Unlike typical ML algorithms that require a large dataset for training, PINNs can train the network with unlabeled data. The applicability of this method has been explored for the flow and transportation of multiphase flow regimes in porous media.

We shall introduce a case study to manage reservoir pressure by implementing a PINN.

The module also details Explainable AI (XAI), a set of processes and methods that allow human users to comprehend and trust the results and output created by machine learning algorithms. Explainable AI describes an AI model, its expected impact, and potential biases.

We shall also explore Generative AI, discussing the Pros and Cons of these techniques in the oil and gas industry.

Harness Upstream Geophysical and Petrophysical Data with Al Workflows

INDEX

- MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using AI techniques
- MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
- MODULE 03 Data Preparation for AI: Upstream Data Augmentation and Feature Engineering
- MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P
- MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning
- MODULE 06 Case Studies: Completion Strategy and Automated Tops

INDEX

MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology

MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable AI and Generative AI

Module 12

PINNS: Physics Informed Neural Networks – Explainable AI and GAI

LEARNING OBJECTIVES

- ➤ GOAL01: Physics and Data-Driven Machine Learning
- ➤ GOAL02: Case Study Reservoir Pressure Management
- ➤ GOAL03: Explainable AI in Upstream: An Application to Lithology Prediction
- ➤ GOAL04: Generative AI in Upstream

Physics-Based against Data-Driven Based Models

Simplified representation of an offshore oil production system

Physics-Based against Data-Driven Based Models

Models	Advantages	Disadvantages						
Physics driven	Strong basics, based on existing solid knowledge Easy to interpret Can detect errors and uncertainties and avoid them Lower probability of bias Easy to be generalized to other problems Fundamental relationships give insight and help in understanding Valid prediction at a full range of model coverage	Hard to integrate historical or archived data with the models Prone to numerical instability as a result of having complex boundary conditions and inputs uncertainties Vast physics knowledge in the domain is required High computational power requirement, so it suffers if used for real time Assumptions need to be set in advance						
Data-driven	Considers the historical data and experiences into the model Able to stably make predictions after training Does not require knowledge of the domain as it depends mainly on data Deals with heterogeneous data Able to enhance performance over time Can detect complicated relationships and patterns	Black box nature and interpretability issues Cannot detect errors or uncertainties Affected by bias in data Not easy to generalize Data availability is the main concern It is an approximation Lower performance outside the scope of the training data Hard to predict critical conditions or extremes						

Hybrid Models

Model	Application	Components
Digital twin	Drilling engineering	Sensor data in near-real time (Data).Synthetic data generated from simulators (Physic: Humans to interact using avatar (Expert) Digital siblings for "what if?" scenarios
ML & probabilistic approach	Oil and gas production	Calculated input parameters using existing principles (Physics) Classification using ML models (Data) A probabilistic model to quantify the uncertainty associated with each method Cost model to predict financial impact
ML & digital rock analysis (DRA)	Reservoir characterization	Rock image acquisition Image processing using ML models (Data) Numerical simulation (Physics) Result Analysis
Surrogate reservoir model (SRM)	Reservoir characterization	Multiple neuro-fuzzy systems Numerical simulation model Spatiotemporal database

Data Science and Machine Learning Applications in O&G

PINN in Upstream: Case Study: Reservoir Pressure Management

Backpropagation loop

Workflow diagram of physics-informed machine learning framework for managing reservoir pressures at a critical location during subsurface fluid injection. The key innovation of the surrogate model is the automatically-differentiable full-order model that allows for heterogeneity.

PINNs in Upstream Conclusions

Explainable AI (XAI)

Explainable AI is one of the key requirements for implementing responsible AI, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability, and accountability.

Explainable AI SHAP

Local explanations for a specific prediction regarding a possible sandstone (A), shale (B), or limestone (C).

Global explanations regarding the XGBoost predictive model, specifically for sandstone (A), shale (B), or limestone (C)

Data Preparation for AI

Generative AI in O&G Upstream

Data Preparation for Al

Generative AI (ChatGPT) in O&G Upstream

Create a python script for sample data for 50 wells with 10 well bores each and each well bore has 9 stages. Include the following parameters NetH, Phi, Sg, Distance from Peak, Laplacian, Dip, Delta Height, Sum of Prop Vol, Qg100, Water Saturation, Pressure Gradient, EUR, Lateral Length, Stage Spacing. Save the output as a CSV file

ShellG&I	DEd -										1							
Source	1	- P.	Well	Well Bore	State	NetH (ft)	PhilOD	50 (%)	Distance (ft)	Lanlacian	Dio ideorees)	Delta Height	Sum of Prop Value	06100 MMscf)	Water Saturation	Pressure Gradient	Lateral Length (ft)	Stage Spacing (ft)
	1.	1		1	1	115,3508648	20.08358153	71,28888667	735,7465697	0.062788837	9,911136558	232,1748743	5263,129947	76.61375847	26.50248416	0.483132272	5388,853941	103.6878181
		2		1	2	105.0189317	24.02831669	81.33902333	423.573941	0.043472298	8.247276797	205.8356519	5318.977328	78.10498506	26.90029601	0.459189435	5617,709328	131.4632348
		3	1	1	3	138.3977138	23.41113061	82.68871067	606.4420788	0.046227365	10.58861926	201.4433845	4807.578256	86.43963254	28.15551733	0.47748332	5029.914953	106.5972634
		4	1	1	4	140,4557159	23.46314577	76.59016713	459,7448032	0.048349178	9.135097691	186.7799386	5072.927784	77.67585643	30.57331582	0.539333313	5980.226436	123.1853797
		5		1	5	125.8903279	19.31530594	87.6233268	597.3638469	0.037102747	10.63918077	189.9805739	5197.482462	83.0062503	26.98647243	0.559320403	5828.513858	143.6095486
		6	1	1	6	119.5162739	23.21718461	87.71988893	762.6507273	0.036554676	10.74470164	229.4518674	4898.005633	78.44969253	27.30853637	0.580451096	5252.181032	122.44676
The second second second		7	1	1	7	97.20906954	17,19969355	72.53321818	513,1665839	0.044694138	11,25921038	234.3515789	4885,834209	78.83288036	26.29608003	0.433771404	5655.078406	129.1016393
Columns (1070)	-	8	1	1 1	8	102.0745788	21.30516828	70.1652977	542.7373843	0.03485809	11.03203262	219.1728483	4961.821933	78.59427741	31.3119684	0.572297744	5577.964122	105.9612568
4 Well Well Burn Well (b) Pis (16) Pis (16) Distance (ft) Leplacian Data Piscon Data Piscon Data Piscon Distance (ft) Distance (9	1	1	. 9	103.6536847	20.32381771	85.38531129	515.6614761	0.049509513	11.20040013	232.1266285	4900.857764	79.82483214	31.27624453	0.460682144	5551,231644	117.7593922
		10	1	2	1	88.99083624	15.1527661	82.89348549	594.6647664	0.062899338	8.030375157	191.5245002	4767.242659	75.64161327	30.99049797	0.490501534	5118.68205	101.2620026
	-	11	1	2	- 2	121,8880461	18.58874875	70.96376675	455.7411406	0.049519817	11.57302236	191.9723933	4897.343082	87,78878071	27.34114329	0.554730693	5198.063335	126.0475438
		12		2	1	112.0205264	24.0248295	72.00510625	719.5253977	0.05825964	8.409833919	219,9204788	5273,218654	87.94201095	27.31707811	0.448529708	5546.439066	105,2553378
		13	1	2	4	83.83801623	22.66346313	70.52413641	643.8697317	0.031582124	8.202672315	239.2210635	4702.947052	82.0507185	29.47363061	0.473797334	5288.996678	131.6190649
		14	1	2	5	118.9641582	21.03385682	83,44281276	418.0506299	0.067875102	9.557997021	226.3178666	4968,477672	76.00585029	30,73814401	0.488057054	5165,142462	141.0217036
		15		2	6	133,1444126	20.08490624	84.5375879	718.277311	0.066327263	10.84535757	227.0074627	5351,371511	84,79731378	29.63314012	0.409891307	5607,19527	122.0628389
	-	16		2	9	132,1966137	17.33905782	86.63298193	543.9900449	0.060305591	9.183998997	209.5121539	5258 194994	82.10854915	29.24297185	0.479166802	5672.266833	131.4903948
		17		2		145,2566267	15,91405455	86 96015024	760.0182213	0.03202747	11,25107992	223.1798732	5240 286075	76.48555844	30.93426526	0.571131598	5161.090607	133,7235725
	-	18	1	2	0	125.0552036	16,71010495	85.0462036	412.1335315	0.053597387	10.13192191	101.350102	\$142.067085	79.7675074	20.44581954	0.498022418	\$570,777301	128.9830186
	-	19		3	1	126.1628274	19.83638454	72.08728404	607.2932314	0.058504578	8.305994321	235.5471461	4902.442551	86,78355616	30.93559987	0.587109097	5594.818027	131,1035091
		20		3	2	135.1613267	22.60158266	70.1775458	516.7440375	0.058242948	9.228297874	189.6207491	4744.000539	85.72492377	28.99457088	0.415085683	5847 347904	117.5299751
	-	21	1	3	1	86.87283576	22.30507714	77.37630373	718.3466392	0.056235011	11,21734707	232.8487959	5214,479317	86.38791214	27.42701303	0.446199529	5573.420462	113,100009
	-	22		3	4	125,7990166	18.10867779	86.6346381	627.6078429	0.057113259	11.88731187	236.2437496	4902.818943	82.24506257	27.18312838	0.465720759	5379.409773	120.2070077
		23		3	5	99.88203014	23.95577837	88.88282573	618.4990034	0.032306475	11.9644409	231,2620363	4767,857048	89.37410208	26.67851387	0.498542911	5351.180343	134.0257076
	-	24		3	6	133,5092603	16.04184935	84.16821004	692.3761781	0.043207408	8.899922281	227.8504318	5025.317379	80.37511939	27.01031346	0.43159785	5910.684672	141.5355221
		25	1	3	7	128,4974324	21.00222222	73.08407515	454.305989	0.030320362	10.04532884	203.510717	5072.6171	77.03509767	29.37913877	0.448825267	5513,795937	127,4380259
		26	1	3		94.35383758	22.91490487	85.62531236	447.6895704	0.062359425	10.87994381	196.0292856	4854.016346	88.0641691	29.86551321	0.443368304	5452.927259	108.0495195
		27	1	3	9	102.0318764	17.78286543	76.67546216	421.000981	0.055162634	10.33675138	211.0570795	5182.54427	87.57521555	30.07696771	0.513935793	5102.266834	117,4331795
		28	1	4	1	143,7515905	15.45491795	73.27219287	470.8278446	0.051622743	9.107476766	222.8555991	5392,940679	83.24351111	27.12471357	0.596382274	5626.265291	102.0901141
		29	1	4	2	96.17674028	24.57048388	82.44885426	404.1954616	0.036807422	8.381622926	105.8167540	4756,216883	85.49070022	29.48941139	0.508101781	5807,75989	147.4511016
		30		4	3	137.4993542	21.73757411	84.98663579	700.2873434	0.060447049	10.13495028	204.640599	5139,711974	79.33748998	31.40568952	0.447999438	5600.840122	101,8501011
		31		4	- 4	114,7706073	22.11295681	85.90010699	437.9623787	0.04355526	9.258742724	239.3434272	5265,228719	76.40263188	29.92700355	0.578524596	5815.669506	122,4151939
	-	32	1	4	5	118.6350632	20.97346128	79.19714022	454,7468517	0.044949515	9.668737106	193.0773861	5182,49945	83,77260787	30.93219067	0.590103412	5649,256846	124.9416537
	-	33		4	6	135,4081107	15,79949141	74.07104509	670.8748923	0.061297203	9,297919189	193.0607722	5383.808504	88,14850236	28,77347417	0.552975979	5858,757024	102.6624758
		34	1	4	7	133.3067885	15.31742447	72.71425614	591,9509859	0.036370617	11.19165349	214.7605168	5020.863838	87.17237534	21,19110959	0.482155562	5436.653427	100 00 18001
		35	1	4	8	101,4975012	22.69593393	72,96419976	798.1883854	0.04205839	8.219584611	236.9064094	5240.636367	75.93851205	28.66738102	0.534763073	5499.98312	1.8267421
		36	1	4		116.7992965	20.31185872	87.60941833	515.0876363	0.049487648	10.407549	232.8346185	5097.661808	83.51474644	31.03958978	0.484644958	5072	7636663
		37		5	1	128.7529134	18.52693269	75.82153802	528.270574	0.053261144	9.13674309	226.2352173	5169.051076	78.80407056	27.27444439	0.548208934	5501.1	
		38	1	5	2	86.49613186	20.07774036	88.82383116	731.7281643	0.058578695	10.32255421	237.0707945	4779.655217	89.71849435	30.52147	0.516333513	5061.3	
· Rows		39	1	5	3	137.614093	23.86514486	75.96103595	505.6100129	0.063184549	11.636322	201,1982657	4838,564684	86.24739771	28.33353816	0.433199212	5284.7	
All rows 9,000	0	40	1	5	4	142.2939046	15.38447461	83.23681777	790.8387557	0.039175009	9.87957714	239.605726	4808.41016	87.58087293	31.3032063	0.411824092	5298.138	
Selected	0	41		5	5	137.4645209	23.10251831	80.75522354	503,6986091	0.049832772	11,45414779	212.2410086	5098,660206	78,28039366	27.43.459612	0.573422973	5113,8937/8	104.7581828
Excluded	2	42	1	5	6	132,2561779	20.71331297	75.31440685	558.6029301	0.039666673	10.24897734	231.0594793	5124 111301	78.41406314	31,9598974	0.466774265	5101.241423	126.8319507
Labeled	0	43		5	7	146.3522795	22.79723204	70.00015153	503.5015395	0.030877889	9.306648981	214.3241148	5175,295924	89.47191474	27.73243521	0.441607513	5134,93889	135.7335823
	·						and a subset				10000000000			a prist rection				1001100000

In [2]: import random import pandas

Set the numb num_wells = 50 num_bores = # Set the rate each parameter

Initialize an empty list to store the data
data = []

Generate random data for each well bore for well in range(1, num_wells + 1): for bore in range(1, num_bores + 1): neth = random.uniform(*neth_range) phi = random.uniform(*sp_range) sg = random.uniform(*sp_range)

```
distance = random.uniform(*distance_range)
laplacian = random.uniform(0.9 * neth, neth)
dip = random.uniform(dip_range)
delta_height = random.uniform(0.1 * neth, 0.5 * neth)
```

sum_prop_value = random.uniform(0.8 * neth * distance, 1.2 * neth * distance) ol00 = random.uniform(*og100_range) ter_saturation = random.uniform(0.1 * sg, 0.8 * sg) ssure_gradient = random.uniform(0.1 * sg, 0.2 * sg)

= random.uniform(0.1 * neth * phi = sg * distance, 0.3 * neth * phi * sg * distance)
ral_length = random.uniform(lateral_length_range)
_spacing = random.uniform(*stage_spacing_range)

end the generated data to the list
append[\well, bore, neth, phi, sg, distance, laplacian, dip, delta_height,
 sum_prop_value, og100, water_saturation, pressure_gradient, eur,
 lateral_length, stage_spacing])

© Create DataFrame from the generated data columns ('Weil', 'Weil', 'Weil', 'Weil', 'Sg (%)', 'Distance (ft)', 'Laplacian', 'Dip (degrees)', 'Delta Height', 'Sum of Prop Value', 'DG100 (%)', 'Water Saturation', 'Pressure Gradient', 'EUR (MMbbl)', 'Lateral Length (ft)', 'Stage Spacing (ft)'] od.DataFrame(data, columns=columns)

d Save the DataFrame as a CSV file
df.to_csv('oil_wells_data.csv', index=False)

Data Preparation for Al

Synthetic Data Generation using Digital Twins

Synthetic Data Generation

On demand, self-service, or automated data generated by algorithms or rules, vs. gathered in the real world, to meet conditions lacking in real data

Synthetic data reproduces the same statistical properties, probability, & characteristics of the real-world dataset from which the synthetic data are trained

Digital Twin

A digital, animate, dynamic ecosystem – comprised of an interconnected network of software, generative & non-generative models, & (historical, real-time, & synthetic) data – that both mirrors & synchronizes with a physical system

Digital twins simulate "what-if" scenarios & stress test systems in the digital world to prescribe actions that optimize the physical world – to improve the lives of individuals, populations, cities, organizations, the environment, systems, products, & more

