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Module 01

Introduction: Data-driven Geophysical and Petrophysical modeling using Al techniques
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LEARNING OBJECTIVES

> GOALOL1: Artificial Intelligence Terminology

> GOALO2: Fundamentals of Soft Computing/Statistics

> GOALO3: Machine and Deep Learning Techniques in Upstream Exploration and Production (E&P)
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INTRODUCTION

Terms most often heard

Regressio g
Classificati Q
Decision
SVM
Gradient
Boosting w

Unsupervised
Learning

Supervised
Learning

Drganizing
Maps

Artificial Intelligence Terminology
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INTRODUCTION

Artificial Intelligence = Knowledge

* Labeled Data
+ Direct Feedback
* Predict outcome/future

Supervised

* Nolabels
* No feedback

*  “Uncover hidden struct ! .
arn series of actions
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INTRODUCTION

Essentials of Statistics

What are statistics?

Make sense of your data

|dentify trends and correlations

Find useful patterns

Propose hypotheses worth modeling

Descriptive Statistics:
Descriptive statistics are brief descriptive coefficients
that summarize a given data set

Inferential Statistics:

Help you come to conclusions and make predictions
based on your data
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INTRODUCTION

Essentials of Statistics
Data is usually classified into one of four
different levels of measurement:;

Nominal Data

<

nominal (a.k.a. categorical or discrete) -
ordinal (rank order) )

&

\

interval (continuous)

Qualitative Data Descriptive/Categorical
Quantitative Data  Numeric Connotation

10
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Nominal
Data

L

Ordinal
Data

Interval
Data

Ratio Data

—

— Statistics Refresher

Qualitative Data

Unordered

I Nominal
categories

Categorical

rdinal Ordered

(Qualitative) I:J

categories

Variable(s) =
iscrete
Numerical values

Numerical - Counts

(Quantitative)

Quantitative Data ' Continuous

Range of values

Dependent and Independent variables are the components in
mathematical modeling, statistical modeling and experimental sciences.
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Data Preparation for Al

Fundamentals of Applied Data-Driven Analytics

Define a business Define Value

problem Proposition — ROI

Dependent and Independent variables are the components in
mathematical modeling, statistical modeling and experimental
sciences.

12
.



BAUERBERG KLETN

Data Preparation for Al

Fundamentals of Applied Data-Driven Analytics

Visual
Exploration

Descriptive
Analytics

,

Predictive
Analytics

13
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INTRODUCTION

Machine & Deep Learning Techniques

Majority of algorithms.

Explainable Al - XAl
14
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INTRODUCTION

What is Machine Learning?

Supervised Learning

The aim of supervised machine learning is | pachine Leaming Techniques :

to build a model that makes predictions ' UNSUPERVISED .

based on evidence in the presence of LEARNING ‘

uncertainty. ——— ﬁ CLUSTERING
- Classification techniques predict discrete dota based only )
responses, for example, whether a reservoir has , : on input daka
bypassed pay. Classification models classify input '
data. Typical applications include seismic imaging, MACHINE LEARNING | CLASSIFICATION
well-log pattern recognition, and facies classification. ‘ J ( SUPERVISED ) ‘

| N

* Regression techniques predict continuous LEARNING
responses, for example, changes in temperature or Develop predictive
pressure in a producing well. Typical applications model based on both (A
include production forecasting. ‘ input and output data REGRESSION

15
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INTRODUCTION

What is Machine Learning?

Unsupervised Learning
- - Finds hidden patterns or intrinsic
: - = = structures in data. It is used to draw
el | inferences from datasets consisting of
- - input data without labeled responses.
>
Clustaring
Patterns in
the Data . . .
Clustering is the most common unsupervised
‘ learning technique. It is used for exploratory
data analysis to find hidden patterns or
groupings in data. Applications for clustering
.-- = include reservoir characterization, field re-
m N H = engineering, and DHI object recognition in
O W g seismic wavelet data.
ﬂ" -
- = - -

16
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INTRODUCTION

Deep Learning Techniques

7
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Input Output
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INTRODUCTION

Time Series Analysis

Forecast vs Actusals

140 { — s =Ty

{
§
(
¢
)
:
/
C
é
§
| <
g
>

Days

2 m ——

What is Forecasting and Optimization? Loy T — S g

Predicting future needs for a product or ——=—= [l l o
service, while Optimization is maximizing o WW‘ g =&

results within a set of constraints. ,H‘ -----
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INTRODUCTION

Artificial Neural Networks

Predictive Models

Input Pattern Neural Analysis Output Pattern Ni is the number of input neurons, No the
Recalculation of all Hidden Layer Oil production number of output neurons, Ns the number of
patterns samples in the training data, and «
represents a scaling factor that is usually
between 2 and 10. We can calculate 8
different numbers to feed into our validation
procedure and find the optimal model, based
on the resulting validation loss.

J“\'IT
calculating error ! -
1% (N + N,))
Input Pattern RMS A = Si — O (@ * (N
2 if A 2 € : adjustment of weights < - after calculating
‘ Hidden Layer ol paﬂehrns
Frcegg [F=—==m) i) e (Gosiata)) o
= _— e - = Recalculation _* = wh Ty
PN of all pattermns ~ W3 : wa OUtp"" Pattern
= o : >
- P - > = il Production
=% : w0 NS e - ) ~ ‘-4” ;
» - = . " - 5= = ) W Output Layer
=y 57 LU0 -
- " gt
- _ Input Layer
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INTRODUCTION

Predictive Models

Support Vector Machine
The SVM is a supervised machine learning algorithm that constructs a hyperplane or set of hyperplanes to distinguish
between instances of different classes.

FacieaClasaWication

- %]

4 - Marine siltstone and shale
Relative Importance Variables

Gamma Ray

Neutron-Density Porosity Difference

Non-Marine Marine

Resistivity Logging

Relative Position

Average Neutron-Density Porosity

Photoelectric Effect

NoopwN=

20




INTRODUCTION

BAUERBERG KLETN

TRAINING & CONSULTING

Predictive Models

Random Forest

A forest is an ensemble model that contains a specific number of decision trees. To ensure that a forest does not
overfit the data, two key steps are taken. First, each tree in the forest is built on a different sample of the training
data. Second, when splitting each node, a set of candidate inputs for the split are selected at random, and the best
split is selected from those. Other than these two steps, the trees in a forest are trained like standard trees.

Relative Importance Variables

NoOpWN~

Non-Marine Marine I
Gamma Ray )
Resistivity Logging ot i

Average Neutron-Density Porosity 4 - Marine siltstone and shale
Photoelectric Effect

Neutron-Density Porosity Difference
Relative Position

...... - e ——
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Module 02
Exploratory Data Analysis: Upstream Data
Exploration and Explanation
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MODULE 02

Exploratory Data Analysis (EDA) is crucial in analyzing upstream Oil and Gas (O&G) data. It
involves examining and understanding the data's characteristics, patterns, and
relationships before applying formal statistical or machine-learning techniques. EDA helps
uncover insights, identify data quality issues, and formulate hypotheses for further
analysis. We shall explain the typical steps involved in conducting EDA for upstream O&G
data:

Data Collection and Data Cleaning
Data Visualization

Descriptive Statistics

Feature Engineering

Correlation and Spatial Analysis
Hypotheses Generation

o v kR wN PR

23
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Module 02

Exploratory Data Analysis: Upstream Data Exploration and Explanation
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LEARNING OBJECTIVES

> GOALO1: Data Management and Data Cleaning Steps
> GOALO2: Upstream Exploratory Data Analysis (EDA) using Tukey Diagrams
> GOALO3: Descriptive Modeling in Upstream Exploration and Production (E&P)

> GOALO4: Process & Methodology for E&P Model Development
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UPSTREAM DATA MANAGEMENT

Production

Header Data Data

Single

Completions
Data

I Data Transforms

g

Qutliers, Imputation
& Rules

LAS Well
Logs

o

| Derive Completions,
Spacing &
Subsurface

Spatial/Temporal

Datamart




BAUERBERG KLEIN

TRAINING & CONSULTING

Exploratory Data Analysis

DATA CLEANING STEPS

Duplicate/ redundant or irrelevant values deletion .

* Fixing issue of unknown missing values

* Fixing problems with mislabeled classes, typesin
names of features, same attribute with different
= name etc.

* Unwanted values which are not fiting in datasets.
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Exploratory Data Analysis

Multivariant
Multidimensional

Multivariate Spectral Dats
Stochastic / . \
iﬂr g M N Static Data

v

I Tima Tempersture Vibration
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Exploratory Data Analysis

Identify Trends, Correlations and Signatures in Patterns

Explore the data to find trends, correlations, and hidden relationships. The goal is to find patterns or
signatures in your data to use them to predict future events in a time series or across spatial data.

The Tukey diagrams give you a visual appreciation of the data in univariate and bivariate analysis.
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Exploratory Data Analysis

Box Whisker Plots

Median +1.58 IQR

R E— Maximum Valuea 4 |I M

—— Upper Quartile (33) Interquartile Range
(IQR)
Outliers — Outliers
Meaiaw £ | 3800 /=) Median P4 % PV
"Minimum" "Maximum"
(Q1 - 1.5%IQR) Q1 Median Q3 (Q3 + 1.5*IQR)
. Lovwesr Chuartile (21) (25th Percentile)  (75th Percentile)
— Minimum Ve -4 =3 -2 1 0 1 2 3 a
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Exploratory Data Analysis

Correlation Matrices

Correlation of Selected Measures
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Exploratory Data Analysis

Scatter Plots

Scatter Plot of Selected Measures

DeltaPHI

GR

ILD_logl0

DeltaPHI GR ILD_logl0 PE PHIND RELFOS

FaciesType ®. 922 9> 9:1 > 9 97 @ W*®
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Exploratory Data Analysis

Heat Maps

Qg100 by Delta_Height, Dip, DistanceToApex, Laplacian

Delta Height
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Tree Maps

SumofPropVol, Qg 100 by WellBoreNumber .:l
«

All WellBoreNumber - StageNumber

@

StageNumber

= 0 @ oMo R W R =

442.3
SumofPropVol Qg100
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Exploratory Data Analysis

Descriptive Modeling

Descriptive modeling techniques cover two major areas:
1. Clustering

2. Associations

3. Classification

The objective of clustering or segmenting your data is to place objects into groups or clusters suggested by the
data such that objects in each cluster tend to be like each other in some sense and objects in different clusters
tend to be dissimilar

Clustering Examples:
Upstream: Well Characteristics (Operational — Completion strategies/Petrophysical

Midstream: Pipeline segments, Cathodic Protection Stations, Pressure drops
Downstream: Amine Towers (Good & Bad process efficiency), Pump Lifetimes

16
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Exploratory Data Analysis

Clustering

Cluster_Analysis

Distance Measures (Metrics)
Evaluating Clustering
Number of Clusters
k-means Algorithm
Hierarchical Clustering
Profiling Clusters

YVVVYVYYYVYVY

17
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Exploratory Data Analysis

Cluster Analysis to Optimize Completion Strategies in an Unconventional Reservoir

Data Acquisition = Data Processing B Clustering

st

G.oa:dnn_., — - _ Source Rock Data Extraction

Cluster
Analysis
L 3

|
Brine Bakken Oil & Gas Raster Files -
Chemistry Properties
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Exploratory Data Analysis

Data Processing

K-means Clustering Algorithm

1.
2.
3.

Hierarchical Clustering Algorithm

Model-Based Clustering Algorithm
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Exploratory Data Analysis

SEMMA Process SUBJECT MAER EXPERTS

* Sample

* Explore

Modify

Model

* Assess

Sample Explore Modify Model Assess

GGRE Data Exploratory Data Data transformation Integrated model Model scoring
consolidation Analysis to surface generation
hidden trends and
‘ refationships
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Exploratory Data Analysis

Data — Discovery — Deployment Data Preparation
— Data
Deployment _.,._'. " ﬁ?ﬁo Management

Data Visualization
DATA

Decision |—|
Support z

DEPLOYMENT

X o Text Analytics
w Visualization

b

] - ) Machine
Forecasting & l‘ 4ON and Deep
Optimization ) Learning
Matural Computer
Language Vision
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Exploratory Data Analysis

TR

) ‘ Unstable parameter estimates

DEPLOYMENT

* Biased Data
* Incomplete Data
* High-dimensional Data

* Sparsity

Preparing
DETER {18

L Misleading variable importance
* Valuera nges as columns Distance measure imbalance
* Multiple variables in same column Gradient dominance
* Variables in both rows & columns

i
Variables of
Disparate er
Magnitudes Overfitting . _
Unknown categorical values in
* Low primary event occurrence rate holdout data
* Overwhelming preponderance of zero or missing values in targe
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Module 03
Data Preparation for Al: Upstream Data
Augmentation and Feature Engineering
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MODULE 03

Data Preparation:

1.Data Collection: Gather the relevant data from various sources, such as well logs, production data, geological surveys, and
reservoir engineering reports.

2.Data Cleaning: Remove or handle missing values, outliers, and inconsistencies in the dataset. This may involve imputation
techniques, filtering, or deleting problematic data points.

Data Augmentation (GAl):

1.Synthetic Data Generation: Generate additional data points using techniques like oversampling, undersampling, or
SMOTE (Synthetic Minority Over-sampling Technique) to balance imbalanced classes or increase the diversity of the
dataset.

2.Time-Series Augmentation: Create variations of the original time-series data by introducing noise, time shifting, or
resampling to capture different scenarios or increase the dataset size.

Feature Engineering:

1.Domain Knowledge: Leverage subject matter expertise to identify relevant features based on geological, geophysical, and
engineering insights. This may involve extracting key attributes, engineering composite features, or creating derived
variables.

2.Dimensionality reduction: Apply techniques such as Principal Component Analysis (PCA) or feature selection algorithms to
reduce the number of features while retaining the most informative ones.

T
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Module 03

Data Preparation for Al: Upstream Data Augmentation and Feature Engineering
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LEARNING OBJECTIVES

> GOALO1: Upstream Data Preparation Techniques for Al Workflows
> GOALO2: Upstream Data Augmentation: GAI

> GOALO3: Feature Engineering
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Data Preparation for Al

Upstream Data Preparation Steps

-Data —> Preparation ——> Analysis —— Insight = Decisions

<
Ty

Data on Demand Decisions You Can Trust Data-Driven Business
Provides correct and Decisions are only as good as Leading O&G operators are
complete data to the the underlying data. Make data-centric. Put optimized
right people at the right decisions you can trust with and enriched data to work
time in the right form. data you can rely on. in your business.
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Data Preparation for Al

Upstream Data Preparation Steps

Connect Everywhere Process Everyway Govern Everything

/ /

Make confident
decisions by
mitigating risks &
improving trust in
data

Increase adoption Boost operational Ensure privacy &
through self-service efficiency through compliance by
data access and simplified data & managing data assets

integration analytics workflow regardless of size, type
or location
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Data Preparation for Al

Normalization

( Neutron-
Porosity )

Log

andardization Scaling

Normalized Data
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Data Preparation for Al

Scaling

KNN with scaling

KNN without scaling

16
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Data Preparation for Al

Well Data - LWD
N~

We have implemented a
data preparation set of
well log analytics and

enrichment workflows to ,

enable an innovative /R 3
lithology-fluid pattern restereimes ]
recognition assistant.

. Identify Litho-Fluids
1 B
.
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Augmentation
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e
e

+ Increased training data via data augmentation ——— Learned boundary from raw training data

— - = True boundary of positive & negative samples  — — — - Learned boundary from augmented training data
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Data Preparation for Al

Augmentation: Imbalanced Data — Tomek Link

: A B C D E £ G H [ J K L
1
2 x0 x1 class g -y . e
3 01 08 0 Dummy Binary Classification Training Data
4 0.2 03 0 1 ® majority dass
5 0.2 06 0 ® minanty
6 03 09 0 0.9 ® ®
7 04 0.7 0 7
8 05 09 0 0.8 © ® 7 7
El 0.7 0.8 0 P
10 0.8 0.4 0 0.7 L4 7
1 0.3 0.2 1 & o
12 05 03 1 ;. 06 * -
13 06 03 1 g s
14 0.7 0.4 1 & 05 7
15 ' ' 5 > 3l

0.4

16 = , 7z @
17 0.3 s °
18
19 0.2 2
20 7 Tomek links: two data items of different
21 0.1 classes that are nearest nelghbors
22
23 0
24 0 0.1 0.2 03 04 05 06 07 08 09
25 X0 predictor
26
27
28
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Data Preparation for Al

Augmentation: Imbalanced Data — SMOTE

EA Majority class samples

@ Minority class samples

@ Synthetic samples

14
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Data Preparation for Al

Augmentation: Generative Adversarial Networks

» Our goalistolearna GAN Training: Train the GAN using real data
Teseomnret mapping G: X - Ysuch samples. The generator is trained to generate
i that the distribution of synthetic samples that mimic the characteristics of
J‘,.,,...:;t'?l“,x ‘ images from G(X) ic the real data, while the discriminator is trained to

sample being real

distinguish between real and synthetic samples.
The training involves an iterative process of
, updating the generator and discriminator networks
an adversarial loss. to achieve a competitive equilibrium.
. We couple this mapping Synthetic Data Generation: The generator network
With an inverse mapping generates synthetic samples once the GAN is
F-Y = X and introduce a trained. The GAN will produce synthetic data
samples like the real data distribution.
, Data Integration: Combine the real data samples
pUSh F(G(X)) b (and VIC®  \yith the generated synthetic samples to form an
versa). augmented dataset.

indistinguishable from
e o SRR the distribution Y using

and the reconstruction

Input image Generator 1 leamstfomap  Generated sample Generator 2 leams to map Reconstruction
(real horse image) from horee images to zebra from zebra Images to horse

e g s e cycle consistency loss to

structure structure

Total loss = discriminator loss + reconstruction loss
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Data Preparation for Al

Generative Al (ChatGPT) in O&G Upstream

Create a python script for sample data for SO wells with 10 well bores each and each well

bore has 9 stages. Include the following parameters NetH, Phi, Sg, Distance from Peak, In [21: import random
import pandas

Laplacian, Dip, Delta Height, Sum of Prop Vol, Qg100, Water Saturation, Pressure Gradient, B i b H L T e DreE
nun_wells = 5

EUR, Lateral Length, Stage Spacing. Save the output as a CSV file nun_bores =

® Set the ral each parameter
feth_range = >)
phi_range = ¢ ]
sg_range =
Siscance Fatne <aee. aeo)
dip_range = (8,
90980 range & (75, 90)

: - - lateral_length_range = (5022, G000)
e Stage |t stage_spacing_range = (188, 150)
S35 008515

Laptacian
0062768837

2650416 0ABITIT
269002560

# Initiolize an empty list to store the dota
data = (1

# Generate random data for each well bore
for well in range(1, num_wells + 1):
for bore in range(1, num bores + 1):
eth = random.uniform(+neth_range)
Phi = rondom:Uniformismhi. range)
sg = random.uniform(=sg_range}

= Coumns (10/0)

93
97.20006054
020745788
0336847
88 99083624

distance = random.uniform{sdistance_range)

laplacian = random.uniform(8.9 = neth, neth)

ip = random.uniform(sdip_range)

delta_height = random.uniform(®.1 = neth, 9.5 = neth)

2 1591405438
1 ' 36 167101085
et

Sum_prop value = rantom. untform(0: 8 neth-= distonce; 1.2:4 noth ®-dlstance)
= random.uniform(+0g1@8_range)
:er_sazurauon = random.uniform(®.5 = sg, 9.8 = sg)
ssure_gradient = random.uniform(9.1 + sg, 9.2 = sg)

4 5tage Spacing ()

random.uniform(@.1 = neth = phi = sg = distance,
al_length = random.uniform(=lateral_length_range)
_spacing = random.uniform({+stage_spacing_range)

©@.3 = neth = phi = sg = distance)

lend the generated data to the list

append( [well, bore, neth, phi, sg, distance, laplacian, dip, delta_| heth(.
s rop_value, 0gl@®, water_saturation, pressure_gradient, eur

lateral_length, stage_spacingl)

# Create lfDotaFrame from the generated data
cotumns P ('Well’, ‘Well Bore', 'NetH (ft)*, "Phi (%)', "sg (%)', 'Distance {ft)*, ‘Laplacian’
‘Dip (degrees)', 'Delts Meight', "Sum of Prop Value', ‘06108 (%
'Naxcr Saturation®, 'Pressure Gradient®, ‘EUR (MMBDBL}®, 'Lateral Length (ft)°,
age Spacing (ft)']
d. DataFrane(da(a columns=columns)

9,00 “w s Save the DataFrame as a CSV file
o ] s df.to_csv(’oil_wells_data.csv’', index=False)

513493809
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Feature Engineering

FanalyticSteps

www.analyticssteps.com

Feature engineering transforms raw data into features
that better represent the underlying problem to the
predictive models, resulting in improved model

accuracy on unseen data.
17
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Data Preparation for Al

Optimize Well Spacing: Data Sculpting

Data Sculpting Feature Engineering Machine Learning Model Deployment
* Information retrieval » Fealure generation * Model tuning and ensemble » Sensitivity analysis

» Data cleaning » Data imputation * Accuracy evaluation * Attribute optimization
» Data standardization » Feature correlation * Model explanation * Result vetting

» Systematic data QC * Fealure reduction * Uncertainty quantification * Output visualization

Repeatable/Scalable Machine Learning Methodology
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Data Preparation for Al

Optimize Well Spacing: Feature Engineering

Data Sculpting Feature Engineering Machine Learning Model Deployment
» Information retrieval « Feature generation * Model tuning and ensemble = Sensitivity analysis

= Data cleaning « Data imputation = Accuracy evaluation = Attribute optimization
« Data standardization * Feature correlation * Model explanation * Result vetting

» Systematic data QC * Feature reduction * Uncertainty quantification * Qutput visualization

Repeatable/Scalable Machine Learning Methodology
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Data Preparation for Al

Optimize Well Spacing: Machine Learning Steps

Data Sculpting Feature Engineering Machine Learning Model Deployment
» Information retrieval * Feature generation * Model tuning and ensemble « Sensitivity analysis

= Data cleaning = Data imputation * Accuracy evaluation = Attribute optimization
» Data standardization » Feature correlation * Model explanation * Result vetting

» Systematic data QC « Feature reduction * Uncertainty quantification = Output visualization

Repeatable/Scalable Machine Learning Methodology
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Data Preparation for Al

Optimize Well Spacing: Model Deployment

Data Sculpting Feature Engineering Machine Learning Model Deployment
= Information retrieval « Feature generation = Model tuning and ensemble = Sensitivity analysis

= Data cleaning = Data imputation * Accuracy evaluation * Attribute optimization
« Data standardization « Feature correlation * Model explanation * Result vetting

= Systematic data QC « Feature reduction * Uncertainty quantification * Output visualization

Repeatable/Scalable Machine Learning Methodology
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MODULE 04

It's worth noting that a combination of supervised and unsupervised techniques, known as semi-supervised learning, can
also be employed in situations with limited labeled data. This allows leveraging labeled and unlabeled data to train models
and make predictions.

The choice between supervised and unsupervised techniques depends on the specific objectives of the analysis, the
availability of labeled data, and the nature of the exploration and production data. Combining these techniques can often
provide comprehensive insights and support decision-making in the oil and gas industry.

Supervised Machine Learning: Machine learning techniques require labeled data, where the input features and
corresponding output labels are known. These techniques are commonly used in exploration and production data analysis
for prediction, classification, and regression tasks.

Unsupervised Machine Learning: Unsupervised machine learning techniques do not require labeled data and are used to

discover patterns, relationships, or structures within the data. These techniques can be useful in exploring and producing
data analysis for data exploration, clustering, and dimensionality reduction.

e
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Data with Al Workflows
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LEARNING OBJECTIVES

> GOALO1: Machine Learning Fundamentals: Classification Clustering
> GOALO2: ML and DL Algorithms: Best Practices
> GOALO3: Modeling Limitations

> GOALO4: Model Selection Criteria
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Machine Learning Techniques

Regression Classification Clustering

Model salection

Data preprocessing
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Classification

Popular Classification Algorithms: )

* Logistic Regression & A
* Naive Bayes

* K-Nearest Neighbors @

« Decision Tree @

« Support Vector Machines
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Classification Clustering

K-Nearest Neighbor in one picture:

New example
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Classification Clustering

Determining Optimum Number of Clusters for an Upstream Analysis
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True label

C [0.0%

3.4%

0.0%

3.4%

0.0%

0.0%

0.0%

0.0%

0.0%

5.0%

PS

CSs

M5

F5

5

Predicted label

M

0.0% |
0.0%
0.0% o
0.0%

0.0%

Classification

The diagonal of the matrix
presents the percentage of
lithology classes that are
correctly classified
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ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms Application Advantages Disadvantages

ANN Regression/ Learning algorithms are simple They are "black box” in nature so it is not easy to be
Artificial neural classification/ With available data it can superior any other | understood or interpreted

networks clustering model Lack the ability of generalization as they are exposed to
MLP multi-layer Does not depend on linearity of any function | overtraining and might memorize specific data
perceptron Can be used for problems which are hard or | For small datasets, the predictions are not acceptable
FF feed forward not practical to get a formula for

REF radial basis

e ANN can be used for tasks that linear Neural networks need training to be used

CN convolutional programs cannot handle The architecture is different from problem to another
EN functional Due to the parallel nature of the networks, For big networks, the training and processing time is high
PN probabilistic they can proceed without problems even if

an element fails

They can learn from experience and avoid
reprogramming

Applicable in most problems

It is tolerant to faults Needs parallel processing abilities
Can learn from experience
Effect of small changes is minor

Handle nonlinear data Exposed to overfitting
Excellent in fitting applications Can be trapped in local optimum solution
Consumes large time in training

12
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ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms Application Advantages Disadvantages
FL Classification/clustering  Quick, easy, strong and effect of If mathematical model is existing, FL is used only in case of
Fuzzy logic environment changes is minor low computational capabilities
Gives a combination of numeric and Not easy to prove the system characteristics as it lacks
symbolic picture of systems mathematics

Can handle problems with strict conditions
or even without exact solution

Can be described with few data points or
approximated datasets

Simple reasoning, application and can deal  Lacks robustness
with uncertainties and nenlinearity

It is able to detect hyperplane of optimal Positive and negative examples need to be used to train
separation the model

Deals with higher degrees of dimensionality | Kernel function choice needs care

Its kernels can learn precise concepts as they  Consumes memory and computation time

have infinite Suffers from numerical stability issues while solving the
Vapnik-Chervonenkis dimension constraint QP

Works well usually

13



BAUERBERG KLETN

TRAINING & CONSULTING

Machine Learning Techniques

ML and DL Algorithms used in O&G: Supervised & Unsupervised

. " . "
Algorithms Application Advantages Disadvantages
1
SV Regression/ Prowvide high accuracy classifiers.Overfitting It is a binary classification technique, so it needs pairwise
Support vector classificationy/ occurrence is little, excellent in dealing with classification to perform multi-class classification that
machine clustering noise means one class against all others, for all classes
Preferred for text classification applications Runs slowly and require high computational power

that are normally high dimensional problems
Intensive memory consumpticn

Get useful information from little datasets Low performance with big data or multi-classification tasks
Has generalization capabilities Kernel function parameters affect the performance

Easy to understand and can be interpreted Even for most simple concepts, the learning of an optimal
Data preparation is fast DT is known as NP-complete

Can deal with numerical and categorized Complex DT models cannot generalize the data well

data Fails to learn some concepts as it is not easy for DT to

It has white box interpretable model express them

Statistical tests can be used to wvalidate the
model accuracy

Robust

Efficiently handle huge data in a little time

DT Regression/ MNonlinearity among parameters do not Complex
Decision tree classification/ affect the performance of DT Duplication might happen for same sub-tree of other
clustering Interpretable and explainable paths
In case of few predictor variables, it is easy Hawve huge storage requirements
to understand The similarity function selection used to correlate instances
Can be used in building models that contain is sensitive
special data types, such as text Mo clear principles for selecting k., excluding over cross-

validation or alike
Computational rate is high

Classes do not need to be linearly divisible Tends to disregard the attributes importance
Modest and powerful Sluggish and expensive

14
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Algorithms

ML and DL Algorithms used in O&G: Supervised & Unsupervised

Application

Advantages

Disadvantages

KN
K nearest
neighbors

Classification/
clustering

Understandable and easy to implement

technique

Can be trained quickly
Robust in case of associated noise

It is
classification

inly well suited for multimodal

Sensitive to local

Data structure

Memory restriction
Supervised type of learning
Sluggish algorithm

High performance

Arise variable measures

Computationally expensive
Owerfit issues

Quick in implementation

Less complex

Does not depend on variables
Disregards original geometry of data

RF
Random forest

Classification/
clustering

Robust with noisy data
Can learn in increments

Low performance with attribute-related training data

K-means

Classification/
clustering

Data point is allowed to exist in different

clusters

MNormal representation of the behavior of

genes

MNeed to define number of clusters c
Membership cutoff value has to be set
Initial assignment of centroids affects the clusters

Changeable model that can adapt different

dataset distribution

If training data increase, the parameters
number does not change

In some cases, the convergence in slow

Fuzzy C-means

Classification/
clustering

Modest and easy to-understand the working

algorithm

As a topological clustering unsupervised
technique, it can deal with dataset

nonlinearity

Unique in directionality reduction being able
to conwvert high dimensions problem to 1-2

dimensions

Time consuming technique

15
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ML and DL Algorithms used in O&G: Supervised & Unsupervised

Algorithms Application Advantages Disadvantages
RINMN Regression/ Can record the information as activations It is affected by the gradient vanishing type
Recurrent neural classification/ with time Mot able to be stacked within extra deep modeling
network Manipulate consecutive information that are

random in length
CNN Regression/ Able to detect relevant features only from Tuning of parameters is difficult

Convolutional
neural network

classification/
image processing

given dataset
Same parameters can be utilized in different
problems

Requires large amount of data

Quick training

Quality might be low

GAN
Generative
adwversarial
network

Regression/
classification/

No approximation techniques needed
Does not require several entries in the
samples

Unstable training
Generating discrete data is difficult

DEMN
Deep belief
network

Regression/
classification/

Layer by layer strategy of learning makes it
capable of learning the features

Deals with non-labelled data and can be safe
from the overfitting and underfitting issues

Some pre training algorithms decrease the performance as
the input data is clamped
Run time is long

Not affected by the fragmentation of
training data thus it reduces over-smooth
problem

Lower output quality

BAUERBERG KLETN

16



BAUERBERG KLETN

TRAINING & CONSULTING

Machine Learning Techniques

Limitations of Al Models

Limitation Reason Solution

Overfitting Lack of an appropriate amount of data to be used for training Using the ratio of input data peints to the total number of
network weights used by the connections (o)

Coincidence Getting a good match by coincidence for a specific dataset Using discriminant analysis
Owertraining When the error keeps decreasing by updating the model structure | A training methodology that is named “early stopping” can
and the model can be more complex to fit a specific dataset be used

Reinforcement learning with in-stream supervision, for
example, the generative adversarial networks

Data Sometimes the gathered data is limited Single-shot learning in which the Al model is pre-trained on a

availability similar dataset and then is enhanced with experience

Interpretability | The single connections in the models do not affect alone but the Local interpretable model and its agnostic explanations
whole model connections combined affect results The generalized additive models method

Generalization | Model failure in the circumstances different from the set of Additional resources are to be utilized for training new
circumstances, which were used in building the criginal model datasets

Bias The nature of black-box models makes it to be prone to biases Using model-independent perturbations

17
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Model Selection Criteria

Vocabulary

When selecting a model, we distinguish 3 different parts of the data that we have as follows:

Training set Validation set Testing set

* Model is assessed
* Model is trained * Usually 20% of the dataset « Model gives predictions
» Usually 80% of the dataset = Also called hold-out or » Unseen data
development set

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen test set. These are represented
in the figure below:

Dataset Unseen data

C C > C )

Train Validation Test
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Model Selection Criteria

Regularization

The regularization procedure aims at avoiding the model to overfit the data and thus deals with high variance
issues. The following table sums up the different types of commonly used regularization techniques:

LASSO Ridge Elastic Net
= Shrinks coefficients to O . Tradeoff between variable selection
Makes coefficients smaller i
and small coefficients

» Good for variable selection

"
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Model Selection Criteria

Bias/Variance Tradeoff

The simpler the model, the higher the bias, and the more complex the model, the higher the variance.

Undaerfitting Just right Ovaerfitting
« High training error = Training error slightly lower - Vary low training error
+ Training error close to test than test error » Training error much lower
Symptoms g
error than test error
+ High bias * Migh variance
=3
@
Regression S
illustration
@
Classification
ilustration

Deep learning
ustration

Epoctm Epooie Epocts

- Complexity model
- Add more features
- Train longer

= Pedform regularization

- Get more data
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Deep learning techniques require substantial amounts of labeled data and significant computational resources for training.
However, they have demonstrated remarkable capabilities in handling complex data and achieving state-of-the-art
performance in various tasks. It's essential to carefully design deep learning architectures, preprocess the data, and fine-
tune the models to extract the most meaningful insights from exploration and production data.

Deep learning techniques have gained significant attention in recent years for their ability to handle complex and high-
dimensional data in various domains, including exploration and production in the oil and gas industry. Deep learning
models, particularly neural networks with multiple layers, can automatically learn hierarchical representations from the
data, enabling them to capture intricate patterns and relationships.

Here's an overview of deep learning techniques commonly applied to exploration and production data:
* Convolutional Neural Networks (CNNs)
* Recurrent Neural Networks (RNNs)

* Autoencoders
* Generative Adversarial Networks (GANSs)

=
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> GOALOL: Deep Learning Fundamentals
> GOALO2: Deep Learning Seismic Data

> GOALOQ3: Deep Learning Architectures used in Upstream
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Demystifying Deep Learning

We shall focus on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) architectures.
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Demystifying Deep Learning: CNNs

Feature Extraction in multiple hidden layers

A

[
»

Max pooling
layer

Dense
layer

Convolutional
layer

Input layer Output layer
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A
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Fully Connected Layer
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Demystifying Deep Learning: RNNs

An RNN model attempts to optimally generate features from past events (remember past events) and use these
features along with conventional model inputs to predict a series of interval targets or a sequence of categorical
targets.

Long Short Term Memory Networks (LSTMs)
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A CNN-based framework to classify anticlines structures on seismic data

LINE 1 1 1 1
TRACE 79 118 155 194 232 271 309
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Seismic Images

+ From seismic Convolutional Neural Network
image pixels, the

first hidden layer

identifies the edges
* From the edges,

the second hidden ; ! e =

layer identifies the e . Gor 0 c Down

corners and

contours Y
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of objects
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4D Seismic Inversion - DNN
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LSTM - Recurrent Neural Network (RNN)
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An LSTM RNN uses a more sophisticated network structure in which past information can be
remembered or forgotten

Many of the recent advances in deep learning have been applied to LSTM RNN models enabling
significant breakthroughs in sequence learning
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Recurrent Neural Network (RNN)

Petrophysical property estimation from seismic data using recurrent neural networks
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The proposed workflow with 2 layers of GRU and a regression layer
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Convolution

Pooling

CNNs +RNNs

Prediction
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1 week horizon

CMMN-LSTM
MAE = 0.94

CNNs +RNNs: Weekly Production Forecasting y
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This Module introduces two case studies based on a data-driven analytical methodology to address a business value
proposition for a completion strategy optimization in an unconventional reservoir in the USA. We shall follow the SEMMA
process introduced in Module 02 under Process and Methodology.

| shall share a Society of Petroleum Engineers technical paper detailing this case study. And there is a demonstration of the
case study in third-party analytics software.

The second case study under investigation in this Module is Tops Bypassed Pay. We shall discuss an automated workflow
with domain input to identify the tops of historical datasets generated from well logs. The analytical workflow follows a
SEMMA process to cleanse data, cluster well data, and select reference wells that provide labeled information to train
machine learning techniques to automate major tops of a field under study.
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LEARNING OBJECTIVES

> GOALO1: Completion Strategy Optimization

> GOALO2: Automated Tops Identification — Bypassed Pay
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Completion Strategy Optimization

How do you analyze risk and uncertainty, strengthen confidence in completion strategies, and quantify the

impact of exploitation plans on attaining predefined targets?

» Operational ” * Maximize Well
Parameters * ) ll\_AoFggtlons
Hard Dat * Production Data S
ard Data MWD, LWD Development * Interference
« Geomechanics Plans Patterns
/ — Stress Fields * Production
Forecasts
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Completion Strategy Optimization

Exploratory Data Analysis

» Determine a protsbilistic
of hypotheses worth

Datcalﬁ.gigtr\’eganton ‘ar\d Y < Build Predictive Models
uality Contro! e «

Generate Prescriptive
cbjective funct

Score Predictive Models Model for Dpidate fdodel dzalnsy.

» Reduce dimersionality of

7 g new data-streams
Operationalization
input space

K-Means Cluster Analysis
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Dataset for ML Workflow:

*Location, Section, wellbore diagrams
+211 wells, 2399 stages

*149 wells

« Stimulated treatment data

+12 months of cumulative production data
*Gas and water rates of production

*119 wells, 166 PLTs, 32 wells with multiple PLTs

+412 wells, distribution analysis of petrophysical sandstone data

*129 wells

N I RCC 4

Completion Strategy Optimization

Geological

Parameters

Distance from the
global maximum
location at the
peak of the
anticline

The slope of the
structure gradient
(15t derivative)

Curvature (2nd
derivative)

True vertical depth
from the top of the
structure

Formation
Petrophysical
Features

Sg Gas saturation

Porosity

Net feet of
petrophysical pay

Operational
Parameters

Total volume of
proppant allocated
for each wellbore
stage

Flowback initiation
timing of
stimulation
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Input Layer Hidden Layer Output Layer

Stage Location

Formation
Petro. Properties

Operational
Parameters

10
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Completion Strategy Optimization
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Completion Strategy Optimization

RS 2 @ |~ il b i 5~ @ ENEA
Show B3 Include (=117 Columns Phi vs. Sg
9 matching rows QU Stage
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Completion Strategy Optimization

-
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Case Studies

Completion Strategy Optimization
B 2 |~ (il e i 5 @R

Start Over Done

n vs. Distance_from_Peak
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Completion Strategy Optimization

WellBore

Phi: 0.0482, 0.0567, 0.058, 0.0592, 0.0655, ...
Sg: 0.3869, 0.5581, 0.3616, 0.4996, 0.6293, ...
Dip: 1.676, 1.676, 1.6707, 1.6759, 1.6759, ...
Delta_Height: 5985.6, 4670.1, 4097.2, 5164.7, 5424.5, ..
WellBore:
Mean(Qg100):
Sum(sumofPropvol):
% of Total:

wellBore

Geological Parameters 15
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Qg100 vs. SumofPropVol
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Geological Parameters
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Completion Strategy Optimization

Important to map Business Problem to a Data Mining Problem

Critical Workflows: Data Management and Dimensionality Reduction

SEMMA Process enables repeatable and scalable soft-computing methodologies
Exploratory Data Analysis: Get a feel for your data!

Model and Score

Operationalize: Avoid academic exercise!

Ensure new data re-trains supervised models

49 stages selected for proppant increase resulted in incremental 1,962 Mscf/d
at the cost of $2.23 million

Economic ROI favorable at gas prices > $3.0 Mscf/d

Breakeven at $2.60 Mscf/d

17
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Case Studies

Tops Bypassed Pay

Rock Strata: Tops and Bottoms of Geologic Layers

1. Depositional contacts, where a sediment layer is deposited over preexisting rock.
2. Fault contacts, where two units are juxtaposed by a fracture on which sliding has occurred.
3. Intrusive contacts, where one rock body cuts across another rock body.

18
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Tops Bypassed Pay
A\

well_id Distanceto  MD_Min MD_Max POR: Porosity CNLC: Compensated Neutron Porosity
Cluster Seed . .
a oy M St - ] 177170036000 1.18E-15 3030 15961 Sw: Water Saturation BHC: Sonic
enti ajor and Minor Tops in hours 177172003600 104615 2585 12692 . . ; .
Quantify uncertainty in Tops e e EGR: Gamma Ray TSPR, T555, TS5W: Thomas-Stieber Logs Vsh: Shale Volume
177144001000 141615 3204 11950
177140034001 120615 10422 11949 "
177140034400 6.04E-16 11901 Measurements taken at -
177140034000 6.74E-16 11875 Deswiion Tvpe
177140017000 11776 a regular step Measured Depth
Kol e ‘ (Redwater: 3 to 20 cm, BorehoIeSCorrmensated Primary
SN 2 H QnIc
: Produce Single | | \L% " depending on the well;
Identify Key Automate Well . well Logg ) MR B P M E d:05 ft) ' Compensated Neutron  Primary
Well Logs Logs Analysis Ditnant A ay Marchand. U, Porosity

Corrected gammaray  Primary

Each log has several
LG PSS Thomas-Stieber logs  Derived

measured and derived

W

H Gamma ray corrected  Derived
variables ! :
: Bay Marchand has only Porosity Derived
Interpreted Train ALL wells |7 |; - -
Seed Wells per ithineack Generate MD’ PO R, SW’ and VSH Water saturation Der!ved
A Scored Tops Shale volume Derived

cluster cluster

19




BAUERBERG KLETN

TRAINING & CONSULTING

Case Studies

Tops Bypassed Pay

9 clusters with 23 to 140 wells us ersize | raming we o
assigned to a different cluster 1 | 140 3 52.3
8 134
Number of wells covered: 418 out of ENN 54 2 80.4
1182 (35.4% of the data) [ a | 48 2 74.1
B s 1 80.6
All but one cluster show results above 26
60% {6?8% to 91.3%] 29 1 £29.3
_— _ B 29 1 81.1
Overall prediction score: 70.0% ——— s 5 o a
Training wells per cluster: 1 to 3 27
- 27 1 70.4
Total training wells: 14 (3.4% of the I
[ 12| 27
data) EETEN 2
|12 X 1 91.3
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Case Studies

Tops Bypassed Pay

- Measured Depth (MD) to a top of a rock layer
. SME identified major rock layer tops
. Analytics automated rock layer tops

. Reduced SME decision cycles from 6 months to 4 days

- Accuracy > 70% _
. Tops Automated Picker identified potential drilling locations to exploit bypqs&éa pay

1W40552030050000 el:1s] 416.14 - I
1W40552030050000 24 572.46 -~ . e

1W40552030050000 153 646.59 = .
1W40552030050000 RYTe 691.88 T
1W40552030050000 (B[R] 719.73

1WA0552020050000 ENIVAYE TF33.86 o
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MODULE 07

This Module introduces two case studies based on a data-driven analytical methodology to address a business value
proposition using seismic attributes. We shall follow the SEMMA process introduced in Module 02 under Process and

Methodology.

The first technique studies Self-Organizing Maps (SOMs), an unsupervised neural network algorithm. SOMs are a valuable
tool for exploratory data analysis and visualization, which map from a high-dimensional input space to a low-dimensional
lattice, preserving the topology of the data set as faithfully as possible. We shall identify critical features to optimize gas
production in an unconventional reservoir.

The second case study under investigation in this Module is Acoustic Impedance. We shall discuss an automated workflow
with domain input to identify important historical datasets that can predict the Acoustic Impedance based on five seismic

attributes. The analytical workflow follows a SEMMA process to cleanse data, perform Exploratory Data Analysis, and
generate Tukey diagrams to understand feature relationships and statistical predictive power.

We shall close with a demonstration using a Jupyter Notebook to generate Acoustic Impedance logs.

e
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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using Al techniques

MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
MODULE 03 Data Preparation for Al: Upstream Data Augmentation and Feature Engineering
MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P

MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning

MODULE 06 Case Studies: Completion Strategy and Automated Tops
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MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable Al and Generative Al
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LEARNING OBJECTIVES

> GOALO1: Case Studies — Seismic Attributes
> GOALO2: Self-Organizing Maps (SOMs)

> GOALO3: Case Studies — Acoustic Impedance
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Case Studies

Classifying Multiple Seismic Attributes

Unsupervised Neural Networks: Self-Organizing Maps

In this research, unsupervised seismic interpretation from multi-attribute data was
analyzed by using an ML technique: SOMs.

= E .y
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Case Studies

Classifying Multiple Seismic Attributes

Seismic Attribute Principal Comp; sural Networks
Generation <

Objective Function
Based on geologic
investigation
Generate Attributes

& '




BAUERBERG KLETN

TRAINING & CONSULTING

Case Studies

Classifying Multiple Seismic Attributes

Seismic Analysis: Unsupervised Neural Network & PCA

/,’\\ Conventional & Unconventional Reservoirs
élculated e

es

" . sRe-interpret \
with SOM R\
attributes >

sAlternate "/
interpretations

S eatributes \. {4
8-zl Classification N

Maps LY /4

e/ "JE Volumes /

.-

e 4 \J
Identify the significant attributes

Maintain variability in data
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Classifying Multiple Seismic Attributes

Reservoir geology
*  Thickness and Lateral extent
*  Mineralogy
»  Porosity and Permeability
Geochemistry
«  Total Organic Content (TOC)

* Pre-Stack Time Migration Traces
+ Attenuation

JIL Acoustic JIL + Bandwidth

Impedance » Envelope slope
Inversion

Geomechanics * Instantaneous

_ _ o, Fractures JIL *  MuRho
+  Maturity and Kerogen Richness Foisson's ratio S-Impedance
Geomechanics
+ Acoustic impedance inversion Geochemistry | jrace envelope
«TOC Velodty . Young’s brittleness

*  Young’s Modulus sKerogen Anisotropy

+  Poisson’s Ratio (Vp/Vs) * Poisson’s Ratio

*  Faults, Fractures, and Stress regimes
+  Coherency and Curvature
*  Fault Volumes
*  Velocity Anisotropy
+  Stress maps

Multivariant
M uktidimensional
Reservoir Multivariate

Dimensions Stochasti

Seismic

Poisson’s brittleness

Shear Impedance

P- impedance

Brittleness coefficient

Spectral decomposition volumes
Instantaneous attributes
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Case Studies

Classifying Multiple Seismic Attributes

Training Process

Maplet

Input Layer

Output Layer

11
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Case Studies

Classifying Multiple Seismic Attributes
Self-Organizing Maps: Unsupervised NN: Qg100 Maplet

Pﬂm

SOM Dimension1
o o

5
SOM Dimension2

r———---- ]
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Classifying Multiple Seismic Attributes
Self-Organizing Maps: Unsupervised NN: Bulk Modulus Maplet

SOM Dimension1

1 2 a3 4 5 ] T 8 9 10
SOM Dimension2
o ___________________ELFENL
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Classifying Multiple Seismic Attributes
Self-Organizing Maps: Unsupervised NN: Instantaneous Phase Maplet

SOM Dimension1

1 5 3 ) 5 6 7 5 4 10
SOM Dimension2
e PLRCKEN)
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Classifying Multiple Seismic Attributes
Self-Organizing Maps: Unsupervised NN: Instantaneous Frequency Maplet

SOM Dimension1

1 2 3 4 5 & 7 8 9 10
SOM Dimension2
I e 0.048145
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Classifying Multiple Seismic Attributes

Self-Organizing Maps: Unsupervised NN: VpVs Maplet

SOM Dimensiont

SOM Dimension2
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Acoustic Impedance Estimation from Seismic Data Using ML in Well-Log Resolution

Variable/Feature

Depth Depth in well (m)

Al_Log Acoustic Impedance calculated from Sonic and Density logs

Al_Inv Acoustic Impedance Inversion determined from 50 well logs and 3D seismic
cube at well locations

17
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Case Studies Seismic Attributes

Amplitude Second Derivative Quadrature amplitude Trace Gradient Gradient Magnitude Inst. frequency Al_Log

=1750 4

—1800

—1850 -

(ms)

=1300 4

ime

=1950 4

Tevo Way T

=2000 4

—2050

—2100 4
=3000 Y] 5000 =1000 O 000 =5000 L] 5000 =500 0 500 0 1000 2000 20 40 10000 15000
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Case Studies Seismic Attributes: Pair plot

16000

14000
£ 12000
10000
ason

saco

500 4

1000 4

Quady
°
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. Seismic Attributes: Descriptive + Normalization/Scaling + Neural Network
Case Studies

count mean std min 25% 50% T5% max

D2 41540 6233901 483 644545 -1301.850220 -269 554354 0937068 287.638557 1426.181519

Quadr 41540 68946043 2222350184 -5258.812012 -1135.513556 -83.833155 1076.680450 ©001.270998
TraceGrad 41540  -1.895277  261.936301 682938904 -148.534729 10918343 157479198  737.373962
GradMag 41240 852799978  580.266093 104631599  417.605415 653321024 1130101133 2719.670186
Freq 41540 33217643 8299750 9.398151 25239159 35046321 35.4657464 56.897087

Descriptive Analysis
Sequential Neural Network Normalization

D2 GQuadr TraceGrad GradMag Freq

7127 -0.110911 -0.186294  -0.423878 -0.951503 -2.239415
7134 00338587 -0197319  -0.512131 -0.93838% -2139127
7148 0.116923 -0237370 -0536117 0929738 -1.5543823
7151 0148651 -0245342  -0.521002 -0.9314381 -17523854

7152  0.158211 -0251999  -0.515862 -0.932080 -1.7535M1

logs mae mse val_loss val_mae val_mse epoch

795 79123.000000 207.771271 79123.000000 91341007812 223.593536 91841.007812 795
796 80963390625 205.555542 80983300625 180168716730 354522369 180165.718730 796
797 78248476562 202.256042 78245476562 142529468750 289.698700 142529468750  T97
798 80460343750 205290558 80460.343750 79298562500 174930710 79298562500 798
799 79822710935 207.968369 79822710938 87984718750 203.654663 87984718750 799

input layer

hidden layer 1 hidden layer 2 output layer

Model Training Progress 20
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. Seismic Attributes: Descriptive + Normalization/Scaling + Neural Network
Case Studies P J

True Al from well logs, predicted Al from seismic attributes and Band-limited inversion Al

16000

&
8
=—

12000+ ﬁ r

10000+ \/

BO00=

Acoustic Impedance
e

—— True Al
Predicted Al

GO0 —— Band-Limidted Inversion

[ 200 400 _ 600 &00 1000
data index
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& Virtual Assistant for Fluids and Lithology
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MODULE 08

This Module introduces two case studies based on a data-driven analytical methodology to address a business value
proposition to optimize drilling and completions and identify fluids and petrophysical properties in an onshore field. We
shall follow the SEMMA process introduced in Module 02 under Process and Methodology.

The first case study details a repeatable and scalable data-driven analytical process to optimize drilling and completion
strategies in a brownfield with upstream historical datasets.

The second case study under investigation in this Module is Lithology-Fluids and Rocks pattern recognition. We shall discuss
an automated workflow with domain input to identify important historical datasets that can predict an African asset's rocks
and fluid contents. The analytical workflow follows a SEMMA process to cleanse data, perform Exploratory Data Analysis,
and generate Tukey diagrams to understand feature relationships and feature engineering for derived variables and
statistical predictive power.
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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using Al techniques

MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
MODULE 03 Data Preparation for Al: Upstream Data Augmentation and Feature Engineering
MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P

MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning

MODULE 06 Case Studies: Completion Strategy and Automated Tops
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MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology
MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable Al and Generative Al
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Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology
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LEARNING OBJECTIVES

> GOALO1: Case Studies — Drilling and Completion in Unconventional Reservoirs

> GOALO2: Case Studies — Fluids and Lithology Virtual Assistant
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Case Studies

Drilling Optimization Process Workflow
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Depth &
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Data Collection

Drilling Optimization Process Workflow

Unsupervised
ML Model to
Cluster

Variable
Importance and
Model Equation

Mathematical
Optimization
for controllable
Drilling
Parameters

@ @

©

O

©

@

@

Exploratory
Data Analysis

Supervised ML
Model

Constraints on
Controllable
Factors
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Drilling Optimization Process Workflow

The Process Run pipeline Variable Importance
Maost Important Variables for Champion Model (O N
B Data 9 i F PR
— —_— VE_ Rt
- o PLIMP_PRE RE I 1
[Q.,Form o : l [%Gmd;:; @ 1 ‘ [$Nuum|rk o ‘ [ﬁ‘?’:«.gm . "ok Loay [ —— —
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—-— — — -
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BIT_DEPTH
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Case Studies

Drilling Optimization Process Workflow

! Bit Depth & MSE Analysis ROP Automated Analysis ROP Simulation MSE Simulation ROP - Model Validation MSE - Madel Validation
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Case Studies

Drilling Optimization Process Workflow

ROP Analysis New Bit Dapth & MSE Analysis ROP Autamated Analysis ROP Simulation

MSE Simulation ROP . Madel Validation MSE - Madel Validation

Filte ROTATING ) > (11Nov2016; 26A¢

2017) > (MONTBLANC 1024H » ) > ( WELLNAME; FORMATION_NAME (12) v =
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Bit Dopth Bit Dopth Bit Dopth
WELL NAME v o o
M KING FLICK
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0,000
0.000
15.000 15.000
15,000
WEIGHT ON BIT TOF DRIVE RFM
WELL NAME WELL NAME
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. . FORMATION_NAME
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Ch

Drilling Optimization Process Workflow

5'“3_55_603' . . Solution: . . X _ Business Benefits Seen:
Optimize ROP while managing cost, NPT, HSE Al models provides real-time intelligent +  Reduce NPT by ~55%

allenge assistant with prescriptive analytics: - Increase ROP by ~75%
Complex multivariate problem — rock properties, Real-time drilling surveillance +« Reduced Cost by ~$15M/Annually
Force on bit, bit type, drilling speed, unforeseen Real-time optimization of drilling parameters for predicting drilling reliability
drilling hazards, mud properties. max cost-effective ROP, better well integrity W issues/failures
Real-time decision making required Continuous Prediction of bit wear, depth-to- =  Maximum Reservoir Contact
Human-only decision making is very difficult failure, etc. )
Mistakes can cost equipment, time, cost and Optimal operating conditions for equipment, e.g.,

human life.

Sensor data in

real-time &
Static

Bit Mode

Tool face Gravity
Mud properties
Torgue

WOB

RPM

HMSE

Hook Load

mud motors, early warning of instability and
failure.

Test & Score ML/DL

Data Integration maodel

Generalize & Real-time Drilling

Operationalize P . .
Run Simulations Optimum Optimization/Advisory

select Optimum Model Model Prescription Model

Data Exploration

Data Pre-Processing

Al Model Types
Classification
SV
GTE 1772
ANN TOOLFACE_GRAWITY

ML/DL
35 W<52 @<70 W<67 [@ <105 @12 @<

12




BAUERBERG KLETN

TRAINING & CONSULTING
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Lithology-Fluids Pattern Recognition

» Well Logs best suited for Lithofacies Classification?
 Classify Lithofacies based on Supervised Learning
Support Vector Machine
Gradient Tree Boosting
Artificial Neural Network
Random Forest
 Predicting Stratigraphic Units from Well Logs

13
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Case Studies

Lithology-Fluids Pattern Recognition

Manual interpretation of lithofacies from wireline log data is traditionally
performed by an expert, can be subject to biases, and is substantially laborious PG
and time-consuming for large datasets.

Multi-Well Log

Automating the facies classification process using machine learning is a Lithology

potentially intuitive and efficient way to facilitate facies interpretation based on cheraentstn
large-volume data. An expert traditionally performs manual interpretation of
lithofacies from wireline log data. T N

Classification

The automated Machine
Learning process to predict
field pattern type recognition

The Al assistant will squest
the best approach to follow to
the domain experts.

Provide workflow automation
that reduces work time and
raises efficiency with real-time
interpretation.

Lithology

Classification Model
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Case Studies

Lithology-Fluids Pattern Recognition

Typical Input Data: Facies-Fluids: Feature Engineering

Table 1 — LWD Curves Table 2 — Derived Features

Logs While Drilling

(LWD) Gas Components Drilling Params.
LHR C1+C2IC3+IC4+nCA#ICS+nCS
Gamma Ray Total Gas (TG) Weight on Bit (WOB) cH (Ca+nCA+ICENCSCE
Rate of Penetration | ' ;
Resistivity Shallow Methane (C1) (ROP) WH C2+C3+iCA+nC4+iC5+nCS/C1+C2+ C3+iC4+nCA+IC5+nCS
Resisti g Ethan C2 ' clic2 c1ic2
esistivity Deep thane (C2) p— s
Neutron Propane (C3) ccs c2ic3
Density IsoButane (iC4) %C1 (C1/C1+C2+C3+C4+nCA+C5+nCS) 100
NormalButane (nC4) %C2 (C2UC14+C24CHHTA+ACA+CE+NCS) 100
%C3 CIIC1+C2+CI+CA+nCA+CS+nCS) 100
IsoPentane (iC5) ) : ) ) :
%04 (iC4+nC4/C1+C2+C3+C4+nCA+ICS+nC5 1 100
NormalPentane (nCS) %CS (IC5+nCHCT+C2+CI+ICA+nCA+ICH+nCS 100
preasrorms e
and L ] =]

With an and L Fluid Pattern
Recognition Assistant: A Case History in a Clastic Reservoir in West Africa

15
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Lithology-Fluids Pattern Recognition

Fluid and rock identification from well log analysis — LWD and MWD

DATA DISCOVERY DEPLOY

3 African Countries GAS c1jc2

22 Wells TG GR WOB ci/c3

=19 km = = | C1-nC5  RESIST  rOP [:ec c2fCc3

o o =, 4 NEUT

=125 e s = =
125k Observation N DENS

; SOMIC

Real Time Mnemonics » Score
Run Score i
ionitoring

Tight well Metadata
check well Data QC Mapping
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Case Studies

Lithology-Fluids Pattern Recognition

Fluid and rock identification from well log analysis — LWD and MWD

—_— Accuracy Accuracy Accuracy

L= = Fluid Fluid Fluid
S B —_—
B i 97% 98% 98%
ial Intelligence
Fiuid -

Accuracy Accuracy Accuracy

Lithology Lithology Lithology

85%

90%

92%
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Module 09
Case Studies: Time-Series Analysis and Production
Forecasting
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MODULE 09

This Module introduces the six principles of forecasting in a time-series dataset.

We shall implement these principles in the case study to optimize production data collected in a brownfield.

The SEMMA process takes on a journey to analyze temporal data using several time-series statistical and machine-learning
methods. The well, reservoir, and field production forecasting uses spatial and temporal data to optimize the re-
engineering of a brownfield.

We shall show the use of both supervised and unsupervised techniques. And we shall introduce a deep neural network
architecture called a Recurrent Neural Network for time-series analysis. RNNs are discussed in Module 05.
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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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INDEX

MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using Al techniques

MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
MODULE 03 Data Preparation for Al: Upstream Data Augmentation and Feature Engineering
MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P

MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning

MODULE 06 Case Studies: Completion Strategy and Automated Tops
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MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology
MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable Al and Generative Al
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Module 09

Case Studies: Forecasting Principles & Production Forecasting Techniques
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LEARNING OBJECTIVES

> GOALOL1: Forecasting - Six Principles
> GOALO2: Forecasting Techniques & Forecasting Data-Driven Workflows

> GOALO3: Case Study: NOC Re-engineering Brownfield
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Case Studies

Six Principles of Forecasting

Forecasting is a stochastic problem

All forecasts are wrong

Some forecasts are useful

All forecasts can be improved
Forecast accuracy is never guaranteed
Having a second opinion is preferred

ouhkwnE
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Case Studies

Production Forecasting
A time series is a sequence of observations Y1, ... ¥t-1, ¥t, where the observation at time t is denoted by Yt.
Rule Induction for TS Forecasting
* Exponential Smoothing (ES)
* Auto-Regressive Integrated Moving Average
(ARIMA)

+« Random Walk (RW)
* Neural Networks (NN)

Production Forecasting Methods
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Case Studies

Exponential Smoothing

Simple and low cost Not as accurate:
* Less Data Memory Storage * ARIMA

* Fast Computational Speed * FFNN
+ Simple Exponential Smoothing (SES)

» Double Exponential Smoothing (DES)
+ Triple Exponential Smoothing (Holt-Winters Method)

n Errar White Nolse Probability far W_MON_GAS_VOL (Log Scale)

150000
sa1

B

& 0
nnnnnn

a 0 0 0 n
Lag
[
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w

pred_date
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Case Studies

AutoRegressive Integrated Moving Average

ARIMA

AutoRegressive Integrated Moving Average

Effect of
error terms

| ’
Differencing D S

(ZF Bo+ b1ED)*+ 4B @+ 0:ED)+ 0:E0)
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Artificial Neural Networks - ANNs

| Parameters | | Input Layer | | Hidden Layer | |  Output Layer |

| I I [

Gas production rate
Tubing head pressure

Flowing bottom-hole pressure — 0il Production Rate

Production time
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Deep Gated Recurrent Unit Network (DGRU - Deep Learning Neural Networks)

: = e D Vol o
- - < A Y= -
= D:nse Lav:r ; :[LL] g
' x The proposed model can handle the temporal
_sean ;&3:# Dropout || s dependenc.ies of complex time-series data at a deep
V| —— . ..I level. It consists of stacks of several layers, where each
t layer solves part of the task and passes the results to
e . the next layer. Since each layer combines the learned
a2 12 33 Laver [t representations of the previous layer and feeds them to
B <4 Block2 a higher layer, better representations of the data can be
l ' = achieved in the model.
Seoat E B SO 1
<< U (5 ey
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Repeatable and Scalable Methodology for Forecasting

i Data i
:Augmentation

R *

DeepAR

P Anomaly """ First
- rediction :  N-BEATS
¢ Removal pedcto ........ 4
z T : Retraining i
Reservoir Data e Transformer
Data Collection Results Evaluation
SN
Y : Evaluation Setup
Injector Data . -
:Inclusion Data-Driven Forecasting

Data
Preprocessing
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Production Forecasting

Five Basic Steps in a Forecasting Task

Using and
Evaluating a
Forecasting

model

Preliminary Choosing
{Exploratory) and Fitting
Analysis Maodels

Problem Gathering

Definition Information

\

N\ N\ \N
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Production Forecasting

Time-Series Data Forecasting
Well Production Workflow

Data-driven analytical workflow to forecast oil/gas production in a well.

Time series Remove
format:
imputation

Data
Preparation:
distribution

analysis

trend & RNN,
seasonality ARIMA,
of missing from the UCM etc.
dates time series

N\ AN a\ a\ : a\

Stationarity
Requirement

Accuracy
Indicators

15
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Production Forecasting

CLUSTER ANALYSIS: WELL PROFILES

High Prescuse, Flow, e

Cumulative oil or gas production

Water cut (Percentage determined by water
production/liquid production)

B exponent (Decline type curve)

Initial rate of decline

Initial rate of production

Geomechanics and Petrophysical Properties
Geological Parameters

Operational Parameters

Completions Design

16
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Production Forecasting — Let’s “stationarize’ our temporal data

Qil & Gas Production Decline Stationary Time Series

o s ' Statistical properties of a stationary time series
L imillon.,
are independent of the point in time where it is

observed.

Mean, variance and other statistics of a
stationary time series remains constant.
Hence, the conclusions from the analysis of

stationary series is reliable

PHE A stationary time series always reverts to the

long-term mean.

A stationary time series will not have trends,

seasonality, etc.

Non-Stationary Time Series

Statistical properties of a non-stationary time series

is a function of time where it is observed.

Mean, variance and other statistics of a non-
stationary time series changes with time. Hence,
the conclusions from the analysis of a non-

stationary series might be misleading.

A non-stationary time series does not revert to the

long term mean.

Presence of trends, seasonality makes a series

non-stationary.

17
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Module 10
Time-Series Analysis and Production Forecasting
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MODULE 10

This Module introduces a case study to optimize the technical potential of a National Oil Company (NOC.) Technical
Potential (TP) forms the basis for future expectations by defining what is achievable and thus highlights the gap between
potential performance and what is realized in hydrocarbon production. This knowledge transforms into initiatives that drive

the processes for minimizing the gap. Assessment and forecasting TP workflows provide the appropriate tools for NOCs to
drive the operator contractors towards better performance targets.

We shall demonstrate a case study to forecast the fluid rates in a brownfield, analyzing historical production data of wells
across multiple reservoirs. The proposed methodology is a Deep Learning Long-Short Term Memory architecture.
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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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MODULE 01 Introduction: Data-driven Geophysical and Petrophysical modeling using Al techniques

MODULE 02 Exploratory Data Analysis: Upstream Data Exploration and Explanation
MODULE 03 Data Preparation for Al: Upstream Data Augmentation and Feature Engineering
MODULE 04 Machine Learning Techniques: Supervised and Unsupervised in E&P

MODULE 05 Deep Learning Techniques: Upstream E&P Deep Learning

MODULE 06 Case Studies: Completion Strategy and Automated Tops
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MODULE 07 Case Studies: Seismic Attributes

MODULE 08 Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology
MODULE 09 Case Studies: Forecasting Principles & Production Forecasting Techniques

MODULE 10 Case Studies: Time-Series Analysis and Production Forecasting

MODULE 11 Digital Twins: Upstream E&P

MODULE 12 PINNs: Physics-Informed Neural Networks & Explainable Al and Generative Al
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Case Studies: Time-Series Analysis and Production Forecasting
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LEARNING OBJECTIVES

> GOALOL: Time Series Patterns Used in Forecasting
> GOALO2: Case Study: Forecasting Well Data from the Volve Field
> GOALO3: Case Study: Production Forecasting using DL Models

> GOALO4: Case Study: Drilling Time series identifying Lost Circulation
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Input Layer

Well Production Forecasting — Volve Field

Feed-Forward Neural Network

Hidden Layer

A Feed-Forward Neural Network (FNN) is an ML
algorithm formulated based on biological neural
Puiipui Eager network functionalities. FNN comprises many
calculating units known as artificial neurons or nodes. It
has been demonstrated to be more successful in
approximating the complex non-linear relationships
between input and output vectors of a database than
the conventional regression methods.

Support Vector Regression is a subset of a Support Vector Machine for regression
analysis.

The fundamental idea regarding the mechanism of Particle Swarm Optimization is
@ that each particle corresponds to a potential solution to an optimization problem.

7
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Well Production Forecasting — Volve Field

Recurrent Neural Networks
° Cell State “ct”

Long Short-Term Memory (LSTM)

(a) (b)

Simple RNN ® RNN is a subset of ANN established to handle the
S input data with sequential characteristics.
Fundamentally, RNN can preserve any previous
information to the current task, and such ability
widens its application in different aspects,
including time series analysis.

Gated Recurrent Unit (GRU)
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Well Production Forecasting — Volve Field

Training and Blind Validation Results

Datasets Models R RMSE Datasets Models R REMSE
Training SVR-TE 09951 13.88 Blind Validation SVR-TE 0.9476 7.34
SVR-PSO 0.9944 14.68 SVR-FSO 0.9644 604
FNN-BF 0.9948 14.00 ENN-BP 0.9538 6,89
FNN-PS0 0.9945 14.92 FNN-FSO 0.9574 6.61
Simple RNMN 0.9945 14.46 Simple RNN 0.9665 g
LSTM 0.9962 12.03
GRU 0.9962 12.17 L"’m 0.9712 245
validation SVR-TE 0.9880 21.37 GRU 0.9700 .96
SVR-PSO 0.9880 20.79
FNN-BP 0.9911 19.13
FNN-PSO 0.9923 15.75 Diatasets Models r® RMSE
Simple RNMN 0.9921 18.27
Best st 0.9910 10.51 All SVR-TE 0.9935 16.52
Testing SVR-TE 0.9764 30.83 FNN-BF 0.9956 13.65
SVR-PSO 09936 16.61 FNN-P50 0.9952 14.15
FNN-BP 0.9936 16.44 Simple RMM 0.9957 13.51
FNN-PSO 0.98098 19.91 LSTM 0.9961 12.69
Simple RNN 0.9941 15.37 Best cru 0.9964 1228
LSTM 0.9922 17.64
GRU 0.9915 18.24
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Data Input Space

» Location data for each well

Production Forecasting

» Historical production of oil, water and gas for each well
- Historical pressures in some wells allow to build an average behavior for each

reservoir
» Petrophysical data

Alias
BCSOD06:MO6
BCSOD06:MO6
BCSO006:M06
BCS0006:M06
BCS0006:MO06
BCS0006:MO06
BCS0006:MO6
BCS0006:MO06
BCS0006:M06
BCS0006:MO06
BCS0006:M06
BCS0006:M06

Well
BCSO006
BCSO006
BCS0006
BCS0006
BCS0006
BCSO006
BCSO006
BCS0006
BCS0006
BCS0006
BLS0006
BLS0006

Reservoir
MOS
MOE
MOE
MOG
MOS
MOBE
MO6
MOE
MO6
MOS6
MOB&
MO&

Date

10633
19664
19604
19725
19756
19784
19815
19845
19876
19906
19937
19968

Days  Oil_Rate_BOPD

1

hoDOOOOWNO

I

16
20

[
2909
[

o ooao

0
3463
3773
3916
5459

Water_Rate_ BWPD

s =3
hWooooooloo

- e
= b

Gas_Rate_MSCFD
o
629

K_mD
3.206
3.206
3.206
3.206
3.206
3.206
3.206
3.206
3.206
3.206
3.206
3.206

» Prepare time series data for training an RNN forecasting model

» Implement an RNN model to predict the next 3 steps ahead (time f+7 to t+3) in the

time series
- Use a simple encoder-decoder approach in which the final hidden state of the
encoder is replicated across each time step of the decoder
» Enable early stopping to reduce the likelihood of model overfitting
« Evaluate the model on a test dataset

h_ft Depth_avg_ft

1803
1803
1893
1893
1893
1893
1893
1893
1893
1893
1893
1893

09032
9932
9932
9932
9932
9932
9932
9932
9932
9932
9932
9932

P_psi Pwi_psi

4950
4950
4950
4930
4950
4950
4950

4930
4950
4950
4950

4950
4950
4950
4930
4930
4950
4950

4806
4793
4787
4723

Date K,mD h,ft P, psi Pwf, psi
9071 41944 124 770 2977 1907
9072 41974 124 770 2978 1657
9073 42005 124 770 2974 GE3
9074 42035 124 770 2973 921
9075 42064 124 770 2972 6G62

# Define input and outputs for the model

Model: "sequential”

Layer (type)

output Shape

Param #

dense (Dense)
dense_1 (Dense)
dense_2 (Dense)
dense_3 (Dense)

dense 4 (Dense)

(None,
(None,
(None,
(None,

(None,

1024)
512)
256)
128)

3)

6144

524500

131328

32896

387

Total params: 695,555

Trainable params: 8§95,

Non-trainsble params:

555
[:}

# Print model summary
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Production Forecasting: Hyperparameters

Well Production Workflow: Predictive Accuracy Indicators
Data-driven analytical workflow to forecast oil/gas production in a well.

. . . . . o deep model.compile(optimizer="adam’
“The function we want to minimize or maximize is called the objective function or criterion. — pile(op '

ST . ; . loss="mse’
When we are minimizing it, we may also call it the cost function, loss function, or error = iy
function.” metrics=["accuracy"])

I use MSE: In the case of regression problems where a quantity is predicted, it is common to use

the mean squared error (MSE) loss function instead. This returns a very good accuracy for your # Compile and Fit the model to the training data
model.
»  Maximum A Posteriori (MAP), a Bayesian method "'-"‘:"E'P'_""':‘'3'E:IL it
»  Maximum Likelihood Estimation (MLE), frequentist method X_t’"a}”s
y_train,
It may be more important to report the “accuracy” and “root mean squared error” (RMSE) for epochs=100@,

models used for classification and regression, respectively. shuffle=True,

verbose=2
Loss function evaluates/diagnoses model learning )

Metric measures model accuracy

e TLoss: Used to evaluate and diagnose model optimization only.
e Metric: Used to evaluate and choose models in the case study context.

11
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Production Forecasting: Hyperparameters

Optimizer

The optimizer performs the necessary computations to adapt to the network’s weight and bias variables during training. Those
computations invoke the calculation of gradients that indicate the direction in which the weights and biases must be changed
during training to minimize the network’s cost function.

The goal of machine learning and deep learning is to reduce the difference between the predicted output and the actual
output. This is also known as a cost function or loss function. Cost functions are convex functions.

We aim to minimize the cost function by finding the optimized weight value. We also need to ensure that the algorithm
generalizes well. This will help better predict the data that was not seen before.

Nadam-Nesterov-accelerated Adaptive Moment Estimation

* Nadam combines NAG and Adam

* Nadam is employed for noisy gradients or gradients with high curvatures

* The learning process is accelerated by summing up the exponential decay of the moving averages for the previous and
current gradient

12
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Production Forecasting: Oil, Gas and Water

Gas Rate, MSCF/D

3000 -

2500

Oil Rate, BOPD

2000
- = History
® Fitting
1500
.
1000

500 -

ks
o P V] O—

® History
& Fitting

“' 20000 25000 30000 e |/O00 40000
:- s ° Water Rate, BWPD
- 7000 - " : ;:;w
20000 25000 30000 o 35000 40000 co00 4 -

s6a0 ¢ .'

Sequential Model — Encoder - Decoder Deep Neural Network wn | 'v

Optimizer: “nadam” Loss: 45208.87030354782 ol - L

Loss Function: MSE Accuracy: 0.8470692038536072 . - . _sni

Epochs - 800 20001 W]

20000 25000 0000
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Production Forecasting: Results

Well Reservoir Date o, BOPD  GQw, BWPD Qg, MSCF/D Well Reservoir Date K,mD h,ft Depth_avg,ft P, psi Pwf, psi
9071 BCS0070 M18 41944 467.636810 1478.841187 466472656 0 BCS0006 MOG 42095 3206 1393 9932 30706 2998
9072 BCS0070 M18 41974 S16.668823 1209.927368 727.219116 1 BCS000G MOE 47175 3706 1893 9937 30679 2995
9073 BCS0070 M18 42005 649.015991 1453822021 263.700012 2 BCSO000G MOS 47156 3706 1893 9937 30650 2998
9074 BCSO070 M18 42036 668285583 1070.237549 300476562 3 BCSOD0G MOE 42186 3906 1839.3 9937 30623 2998
8075 BCS0070 M18 42064 665.108887 1465606567 262656342 4 BCS0006 MO5 47217 3206 1893 9937 305094 2993

Well Reservoir Date K.mD h,ft Depth_avg, ft P, psi  Pwf, psi list Completion

1440 BCS00TO M18 43770 1.24 77.0 9357 2901.093551 695 [BCS007T0, M13] BCS00T0:M13

1441 BCS007T0 M18 43300 124 77.0 9357 2599969240 695 [BCS0070, M13] BCS00TO:M13

1442 BCS007T0 M13 43531 1.24 77.0 9357 2395311652 695 [BCS0070, M13] BCS0070:M13

1443 BCS007TD M1& 43882 124 77.0 9357 2597 655333 695 [BCS0070, M13] BCS007O:M13

1444 BCS007T0 M15 43591 1.24 77.0 9357 2596 583256 683 [BCS0070, M13] BCS0070:M13

14
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Case Studies

Deep Learning Time Series Analysis

v Drilling Rig -+ Borehole/wellbore

_-L v Earth Surface v Borehole

_—» Formation A ~— Drilling Fluid

~+ Annulus

v Formation B

_v Formation C = Drill pipe

,»’// =
_«////
- FormationD

v Formation E

-+ Formation

_» Reservoir Formation

~ Drill Bit
~* Bit Nozzle

Figure 01 Figure 02
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Case Studies

Deep Learning Time Series Analysis

= Feature selection and
engineering
* Window normalization

= Preliminary cleansing
- Window extraction

i! 4] e« Surface drilling data + Data curation

=
Database

Contrasting ML/DL
model behavior

Well1 Well2  Welln

= Lost circulation labels
Historical Data

Feature Engineering
and Normalization

Collection

Tuning hyperparameters
— through experiments

Algorithm

Selection Training and Tuning

1 |

6 r )
« Surface drilling data - * Preprocessing Real-time probability
71 « Other data * Feature engineering curve of LCE
New well and normalization

New well -
€ Data Preparation
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Deep Learning Time Series Analysis

Parameter

Units

Weight on bit (WORB)

Hook height (HKHT)

Hook load (HKL)

Torque (TQ)

Stand pipe pressure (SPP)
Flow-in rate (FLWIN)

Flow-out rate (FLWOUT)

Rate of penetration (ROP)
Revolutions per minute (RPM)
Total mud system volume (PVT)
Trip tank volume (TTV)

Kilo pound (klbf)

Feet (ft)

Kilo pound (klbt)
Pound-foot (kft.1bf)

Pounds per square inch (psi)
Gallons per minute (gpm)
0-100%

Feet per hour (ft'hr)

Rpm

Barrels

Barrels

Table 01

- LC
@ Normal operations
&= Discarded data
e ' Selected S segments 15-minute
Time Selected Surface drilling sliding window
dAata <.20 Parameters stride 1 row (5 secs)
Sy B> s e
24 hrs = 2D matrix —)
Sy s2
_-S52-20
o 2D matrix =
24 hrs s> s,
B
LCl S3 2D matrix -
NN T~ sa
")‘-\,.”"*» La-as
24 \‘ 2D matrix =
a T Lees
Data with

respectof time Each window represents a 2D sample

WOB(t,) HKHT(t,) HKL(t,) TTV(L,)
WOB(t,) HKHT(t,) HKL{t;) TTV(L,)
WOB(ts) HKHT(t:) HKL(t3) TTV(ts)
WOB(ty50) | HKHT(t325) HKL(t,50) TTV(ts0)
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Deep Learning Time Series Analysis

Case Studies Table 01

. Data Preprocessing Criteria Description

Feature Englneerlng Relevance Drllllng operations generate various formsr ql‘
Window normalization LC1 Reported by Drilling Crew e o e e vam

. features, which could hamper DL model training
Data Spllt in latter stages.
Range check Elimination or re-sampling data within soft upper

. Algorlthm tunlng Flg U I’e 01 and lower boundaries to eliminate extreme and

physically meaningless drilling feature values
(e.g., negative ROP).

g wN R

011209

Gap filling Drilling data sometimes have one or more
missing features across specific intervals of time,
which must be either imputed or ignored during
training. Whereas imputation is outside the scope
of this work, wells with missing data across the
intervals of interest are ignored during training.
During evaluation, data processed through the
model must be either complete or imputed a
priori before utilizing the proposed model.

011212

011215

Rl ol Len

011218

011221 . - I Tr . =
Duplication check Drilling databases sometimes contain repeated or

redundant features which hold perfectly or nearly
identical values, hence these redundant features
are checked and dropped at this stage. Note that
redundancy is often encountered when the same
physical quantity is measured using two different
tools. For instance, in managed pressure drilling,
FLWOUT is a Coriolis flow meter in addition to
the standard rig flapper sensor located at the mud
return line (a pipe through which mud flows from
the well head to the mud tanks).

Unit Features stored in different measuring units (e.g.,

standardization pounds versus kilo pounds) across different wells
are standardized to be consistent and comparable
in magnitude.

011300

01-1303

011306

011309

011312

1700 1800 9 10 1 00 05 10
T ™

HKHT L RPM FLVPMPS prediction
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Module 11
Digital Twins: Upstream E&P
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MODULE 11

This Module introduces case studies where Digital Twins are implemented. We shall explore the Digital Twin methodology
and the various versions used in the upstream Exploration and Production (E&P) value chain.

Generative Al (GAIl) is gaining traction across business verticals. We shall discuss Digital Twins from the perspective of
generating or augmenting synthetic datasets for machine-learning data-driven analytical workflows in E&P.

Reinforcement Learning (RL) is a subfield of machine learning that focuses on how an agent can learn to make sequential
decisions in an environment to maximize cumulative reward. It is inspired by how humans and animals learn through trial

and error and interact with their surroundings. We shall compare RL with supervised and unsupervised methods.

We introduce a Reservoir Simulation case study using RL.
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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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Digital Twins: Upstream E&P
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LEARNING OBJECTIVES

> GOALOL1: Digital Twins Introduction
> GOALO2: Digital Twins in the O&G industry
> GOALO3: Case studies implementing Digital Twins in upstream

> GOALO4: Reinforcement Learning: A ML Technique for Digital Twins
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Digital Twins

LR |
1 00

i et 0 WM st

1. Improved performance

2. Enhanced predictability (reduced downtime)

A Digital Twin is a virtual representation of real-world
entities and processes, synchronized at a specified frequency
and fidelity... Digital twins use real-time and historical data to
represent the past and present and simulate predicted futures....

3. Increased innovation through virtual testing

4. Improved collaboration and decision-making

5. Reduced costs (Maintenance, Labor, Raw Materials) A5 dafiniect byithe Digital Tt Colisartion:
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Digital Twins

BAUERBERG KLETN

Digital Twins

e N

A Digital Twin Goal is to optimize performance, predict and prevent failures, and
facilitate data-driven decision making

Understanding the physical world

DATA CAPTURE ’
LR ]

/" Digital Twin
DESCRIBE
DECIDE

PREDICT eee

Future
Physical
world

Physical
world

TWIN OF
TODAY

PRESCRIBE
s e

: *#** CHANGE

Transforming the physical world

Digital Twins support bi-directional flows and continuous learning across all lifecycle

stages...

o /

Digital Model of an
actual physical object
in operation

Streaming data (loT
Sensors) is a real-time,
or frequency-based
feed of contextual
condition or
performance data

Artificial Intelligence, 1%
Principal Models,
Scenario modeling &
Intelligent decisioning
to aid in synthesizing
data and scaling
accurate predictions

Static parametric data
that represents specific
Asset or component
Characteristics

Historical data,
specifically under
certain conditions or
events (like failures).
Vital for correlations

Entity control to
ultimately perform
autonomous or
human augmented
actions that creates
business value
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Digital Twins

Exploration and Drilling Digital Twins

* Reservoir Simulation: Digital twins can model underground reservoirs to predict how they'll behave. This aids in
optimizing extraction techniques and maximizing the reservoir's yield.

* Drilling Optimization: By simulating the drilling process, companies can identify potential issues (like equipment failures
or geological hazards) and adjust the drilling strategy accordingly.

Asset Performance Management

* Predictive Maintenance: Digital twins can predict when equipment might fail using sensors and real-time data. This
helps companies fix problems before they happen, reducing downtime.

* Operational Optimization: Digital twins can model the entire operation of an asset (like an oil rig or refinery).
Companies can find the most efficient way to run their operations by simulating different conditions.

* Production Optimization: Flow Simulation: Digital twins model the flow of oil and gas through pipelines and other
infrastructure. This can help identify bottlenecks or inefficiencies in the system.

Real-time Monitoring and Control

* Remote Operations: Particularly useful in offshore or remote sites, digital twins allow operators in centralized control
rooms to monitor and control equipment from a distance.

* System Performance: By continuously comparing the digital twin's performance with the real-world asset,
discrepancies can be spotted immediately, leading to quick interventions. 9
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Digital Twins

Digital Twin in the Hydrocarbon Industry

Communicate

Digital Twin (DT) modeling is the
foundation for the next generation of real-
time production monitoring and
optimization systems. It is a solution that
boosts productivity by combining
information, simulation, and visualization
throughout the entire value chain of an

e operational firm, from subsurface
nalytics . .
Actuators equipment to central production plants.

Sensors

Physical Entities Virtual Entities

Integration

IVLIDIA

-
<
=
75
=
T
o

Insight
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Digital Twin in the Risk Assessment Process

A digital, animate, dynamic ecospstem —
comprised of an interconnected network of

software, generative & non-generative

models, & (historical, real-time, & 1

data — thot both mirrors & synchronizes with

a physical system

Digital twins simulate “what-if" scenarios
& stress test systems in the digital world to
prescribe actions that optimize the physical
world — to improve the lives of individuals,
papulations, cities, organizations, the

enviranment, systems, products, &

Generative Al — Digital Twin

Data Gathering,
Cleaning and
Input

Virtual Replica of the well status and
validation of the Failure model

Virtual Intervention on the well to
verify proposed solution

Risk
Proposed Proposed Assessment
solution solution
technically technically Process
valid NON valid

Field
Implementation

Digital twin standard workflow

11
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Digital Twins

Digital Twin Framework for O&G Production

Interaction to Calibrate Virtual System

Real System Digital System

Physical Virtual
Hydrocarbon Perceptual Data Hydrocarbon

Production Simulation Data Production
System System

Digital Twin Data

,gimulation .
TR

yorqpaa4 aAndRIa|

Interactive Feedback

Intelligent

12
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Digital Twins

Strategies to Achieve a Digital Twin Model

Operational
Analytics

Additive
Manufacturing

Robotics

13
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Digital Twins

Annulus
SN ]
Wellhead v T L \ 1 ) O]
Cos|B °dA o 09 b'6%al0 0" Gas Chamber
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Digital Twin — Smart Water Optimization Workflow

From the From the

Well Digital Twins Reservoir Digital Twin
* Capture and * Automatically
consolidate the update the
production and reservoir
injection table simulation model
every month * Run the reservoir
*RT Data model and
« Well Test compare results
« Well Models with history data
* Retrieve reservoir
parameters

Figure 01

To the integrated Reservoir-
Production Digital Twin

« Calculate the
waterflooding KPIs

* Provide actions if
indicators are
above or below
target values.
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Digital Twins

What is Reinforcement Learning?

State s, Reward r,

-

Agent

Environment
W

Reinforcement learning is learning what to do
— how to map situations to actions — to
maximize a numerical reward signal. The

learner is not told which actions to take but
must discover which ones yield the most
reward by trying them. In the most interesting
and challenging cases, actions may affect the
iImmediate reward, the next situation, and all
subsequent rewards. These two characteristics
— trial-and-error search and delayed reward —
are the two most important distinguishing
features of reinforcement learning.

16
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Reinforcement vs. Supervised/Unsupervised

Reinforcement Learning

Objective: choose ” actions
Environment is
Training involves the

environment

Training process involves
the “best” policy

of rewards on
previous actions

Supervised/Unsupervised Learning
Objective: Predict, classify or simplify

Environment is (x is known)

Training involves in data
or is entirely absent

Training process involves the
“best” model

Individual points are of

each other

17
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Deep Reinforcement Learning (DRL)

a Classic Reinforcement Learning
Reinforcement Learning Problem Tabular Solution
Actions Actions
Agent Environment

Cc Deep Reinforcement Learning:
Deep learning solutions for RL problems

" Actions N

Environment

States

Expected
Future Reward

\

Observations,

‘Rewards ”

b Classic Deep Learning
Categorization Problem Deep Learning Solution
Label Guesses

True Labels
Labelled Dataset

Classifier

Observations,

Unit Activities

Sample Features

18
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Digital Twins

CNN > |FNN—>

L]
4

. A h__.a'

Deep Reinforcement Learning for Petroleum Reservoir Optimization

19



BAUERBERG KLEIN o

TRAINING & CONSULTING

Digital Twins

Agent Reservoir Simulation

state reward
S! R, Ar

i R;-\-l [
i ,
S _LEnwronment ]<i

Deep Reinforcement Learning for Petroleum Reservoir
Optimization
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PINNs: Physics-Informed Neural Networks &
Explainable Al and Generative Al
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MODULE 12

This Module introduces PINNs, Physics-Based Neural Networks., recently proposed for solving partial differential equations.
Unlike typical ML algorithms that require a large dataset for training, PINNs can train the network with unlabeled data. The
applicability of this method has been explored for the flow and transportation of multiphase flow regimes in porous media.

We shall introduce a case study to manage reservoir pressure by implementing a PINN.
The module also details Explainable Al (XAl), a set of processes and methods that allow human users to comprehend and
trust the results and output created by machine learning algorithms. Explainable Al describes an Al model, its

expected impact, and potential biases.

We shall also explore Generative Al, discussing the Pros and Cons of these techniques in the oil and gas industry.
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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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Module 12

PINNS: Physics Informed Neural Networks — Explainable Al and GAI
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LEARNING OBJECTIVES

> GOALO1: Physics and Data-Driven Machine Learning
> GOALO2: Case Study Reservoir Pressure Management
> GOALO3: Explainable Al in Upstream: An Application to Lithology Prediction

> GOALO4: Generative Al in Upstream
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PINNS

Physics-Based against Data-Driven Based Models

Neural Network AD

@ ... W |
/’0‘ H\l@w Lopg = f(0,0:0,8,8, ... 4) !
"' “' | LData 2% ﬂ|n ulData

'w@» N
“\ /’ "‘\ ‘ Lic =, — 9lag,
0 ‘\\W Lyc = (Onfllan—0,9laq) + [@lan ~ !Ilan)

A

oL oL
Updated,6 2004 .
L=wLppg +WoLyarat
Y w3l wyLpe
End

| Note: @ = [u,v,p, @], x = [x,y], 6: weights/biases, A: unknown PDE parameters, w;,i = 1,..., 4: weights I

Simplified representation of an offshore oil production system
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Models

Physics
driven

Data-driven

Physics-Based against Data-Driven Based Models

Advantages

Strong basics, based on existing solid knowledge
Easy to interpret

Can detect errors and uncertainties and avoid them
Lower probability of bias

Easy to be generalized to other problems
Fundamental relationships give insight and help in
understanding

Valid prediction at a full range of model coverage

Considers the historical data and experiences into the
model

Able to stably make predictions after training

Does not require knowledge of the domain as it
depends mainly on data

Deals with heterogenecus data

Able to enhance performance over time

Can detect complicated relationships and patterns

Disadvantages

Hard to integrate historical or archived data with the models

Prone to numerical instability as a result of having complex boundary
conditions and inputs uncertainties

Vast physics knowledge in the domain is required

High computational power requirement, so it suffers if used for real time
Assumptions need to be set in advance

Black box nature and interpretability issues

Cannot detect errors or uncertainties

Affected by bias in data

Not easy to generalize

Data availability is the main concern

It is an approximaticn

Lower performance outside the scope of the training data
Hard to predict critical conditions or extremes
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PINNS

Hybrid Models

Model Application Components

Digital twin Drilling engineering Sensor data in near-real time (Data).Synthetic data generated from simulators (Physics)
Humans to interact using avatar (Expert)
Digital siblings for "what if?" scenarios

ML & probabilistic approach Qil and gas production Calculated input parameters using existing principles (Physics)
Classification using ML models (Data)
A probabilistic model to quantify the uncertainty associated with 2ach method
Cost model to predict financial impact

ML & digital rock analysis (DRA) Reservoir characterization | Rock image acquisition

Image processing using ML madels (Data)
Numerical simulation (Physics)
Result Analysis

Surrogate reservoir model Reservoir characterization Multiple neuro-fuzzy systems
(SRM) Numerical simulation model
Spatiotemporal database
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Data Science and Machine Learning Applications in O&G

eInherit physics.

Statistical &
Data Driven

eRegression

eClassification

eDimension
Reduction

eReservoir Simulation
eProduction Modeling
*PTA

Probabilistic

e"what if?" senarios
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PINNS
PINN in Upstream: Case Study: Reservoir Pressure Management

Variable or Convolutional Operational Automatically-differentiable ;. —_—

uncertain properties Neural Network control full order model 0SS Function
. parameters
Heterogeneous | | o X8 @ —»  Extraction rates Pressure errors at
permeability samples pQia o critical locations
y n7
*—@

Backpropagation loop
Workflow diagram of physics-informed machine learning framework for managing reservoir pressures at a critical location
during subsurface fluid injection. The key innovation of the surrogate model is the automatically-differentiable full-order
model that allows for heterogeneity.
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PINNs in Upstream Conclusions

Training a physics-informed
neural network

physical
quantities

Compare to Compute derivatives and
training data minimise underlying
equation residual
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PINNS

Explainable Al (XAl)

Explainable Al is one of the key requirements for implementing responsible Al, a methodology for the large-scale implementation of
Al methods in real organizations with fairness, model explainability, and accountability.

13
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PINNS

Explainable Al

Ingesdtatzzriilling ‘ . ‘ - ) | Predict lithologies:
eature raining an
g - Al Sandstones
Shales
‘ Limestones
Mud Logging Data Correlation Matrices & SHAP

from 10 wells Box Whiskers
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PINNS

Explainable Al SHAP

A
fe) =4 B i) =3 o »*--Mﬁ-—.-..... —*o-
" ..__*.4_’__.....,.*._. M._vﬂ.ﬁ**
ron "*.‘...*_.‘ s - k*
-1 0 1 2 3 4 5 -3 -2 -1 0 1 2

EIEX” S Hﬂx}] - ) 2 o 4 [} - -+ -2 [] 2
R ISR . ety s s

7 = ROP +1.08 2 = ROP

C fix - lc

]
o .
RPM -0.82 R |

5 -4 3 2 a 0
EAx)] =07 M - -

Local explanations for a specific prediction regarding a possible
sandstone (A), shale (B), or limestone (C). B
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PINNS

Explainable Al SHAP

[C]

i — bt STV

! N 6 A -2 0 2
SHAP value (impact on model output)

High
Low

Feature value

-4 2 0 2 4 6 -6

- -4 -2 0
SHAP value (impact on model output) SHAP value (impact on model output)

Global explanations regarding the XGBoost predictive model, specifically for sandstone (A), shale (B), or limestone (C)
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Data Preparation for Al

Generative Al in O&G Upstream

ENHANCE
REPRESENT THE CUSTOMER
REDUCE TIME UNDERREPRESENTED BECOME ROBUST EXPERIENCE
GROUPS ENABLE
SPENT LABELING S L DECISION-MAKING

GENERALIZE

MITIGATE
SCALE DATA TRAINED MODELS

BIAS
WHERE LITTLE TO ACCURATELY

NO DATA EXISTS INCREASE

DATA PRIVACY
& UTILITY OPTIMIZE
SIMULATIONS

STRESS TEST
SYSTEMS

REDUCE ACCESS &
SHARING BARRIERS

REDUCE SPEND
ON ADS
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Data Preparation for Al

Generative Al (ChatGPT) in O&G Upstream

Create a python script for sample data for SO wells with 10 well bores each and each well

bore has 9 stages. Include the following parameters NetH, Phi, Sg, Distance from Peak, In [21: import random
import pandas

Laplacian, Dip, Delta Height, Sum of Prop Vol, Qg100, Water Saturation, Pressure Gradient, B i b H L T e DreE
nun_wells = 5

EUR, Lateral Length, Stage Spacing. Save the output as a CSV file nun_bores =

® Set the ral each parameter
feth_range = >)
phi_range = ¢ ]
sg_range =
Siscance Fatne <aee. aeo)
dip_range = (8,
90980 range & (75, 90)

: - - lateral_length_range = (5022, G000)
e Stage |t stage_spacing_range = (188, 150)
S35 008515

Laptacian
0062768837

2650416 0ABITIT
269002560

# Initiolize an empty list to store the dota
data = (1

# Generate random data for each well bore
for well in range(1, num_wells + 1):
for bore in range(1, num bores + 1):
eth = random.uniform(+neth_range)
Phi = rondom:Uniformismhi. range)
sg = random.uniform(=sg_range}

= Coumns (10/0)

93
97.20006054
020745788
0336847
88 99083624

distance = random.uniform{sdistance_range)

laplacian = random.uniform(8.9 = neth, neth)

ip = random.uniform(sdip_range)

delta_height = random.uniform(®.1 = neth, 9.5 = neth)

2 1591405438
1 ' 36 167101085
et

Sum_prop value = rantom. untform(0: 8 neth-= distonce; 1.2:4 noth ®-dlstance)
= random.uniform(+0g1@8_range)
:er_sazurauon = random.uniform(®.5 = sg, 9.8 = sg)
ssure_gradient = random.uniform(9.1 + sg, 9.2 = sg)

4 5tage Spacing ()

random.uniform(@.1 = neth = phi = sg = distance,
al_length = random.uniform(=lateral_length_range)
_spacing = random.uniform({+stage_spacing_range)

©@.3 = neth = phi = sg = distance)

lend the generated data to the list

append( [well, bore, neth, phi, sg, distance, laplacian, dip, delta_| heth(.
s rop_value, 0gl@®, water_saturation, pressure_gradient, eur

lateral_length, stage_spacingl)

# Create lfDotaFrame from the generated data
cotumns P ('Well’, ‘Well Bore', 'NetH (ft)*, "Phi (%)', "sg (%)', 'Distance {ft)*, ‘Laplacian’
‘Dip (degrees)', 'Delts Meight', "Sum of Prop Value', ‘06108 (%
'Naxcr Saturation®, 'Pressure Gradient®, ‘EUR (MMBDBL}®, 'Lateral Length (ft)°,
age Spacing (ft)']
d. DataFrane(da(a columns=columns)

9,00 “w s Save the DataFrame as a CSV file
o ] s df.to_csv(’oil_wells_data.csv’', index=False)

513493809

18



BAUERBERG KLETN

TRAINING & CONSULTING

Data Preparation for Al

Synthetic Data Generation using Digital Twins

On demand, self-service, or autormated A digital, animate, dynamic ecosystem —
data generated by algorithms or rules, comprised of an interconnected network of

vs. gathered in the real world, software, generative & non-generative

to meet conditions lacking in reaf data models, & (historical, real-time, & )

data — that both mirrors & synchronizes with
Synthetic data reproduces the same a physical system
statistical properties, probability,
. L. _ Digital twins simulate “what-if” scenarios
& characteristics of the real-world dataset ] e
. . . & stress test systems in the digital world to
from which the synthetic data are trained . . e .
prescribe actions that optimize the physical
world — to improve the lives of individuals,
populations, cities, organizations, the

environment, systems, products, & more
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