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Harness Upstream Geophysical and Petrophysical
Data with Al Workflows
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Module 08

Case Studies: Drilling Program & Completion Study and Virtual Assistant for Fluids and Lithology
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LEARNING OBJECTIVES

> GOALO1: Case Studies — Drilling and Completion in Unconventional Reservoirs

> GOALO2: Case Studies — Fluids and Lithology Virtual Assistant
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Case Studies

Drilling Optimization Process Workflow
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Data Collection

Drilling Optimization Process Workflow
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Drilling Optimization Process Workflow
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Drilling Optimization Process Workflow
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Drilling Optimization Process Workflow
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Ch

Drilling Optimization Process Workflow
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Lithology-Fluids Pattern Recognition

» Well Logs best suited for Lithofacies Classification?
 Classify Lithofacies based on Supervised Learning
Support Vector Machine
Gradient Tree Boosting
Artificial Neural Network
Random Forest
 Predicting Stratigraphic Units from Well Logs
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Lithology-Fluids Pattern Recognition

Manual interpretation of lithofacies from wireline log data is traditionally
performed by an expert, can be subject to biases, and is substantially laborious PG
and time-consuming for large datasets.

Multi-Well Log

Automating the facies classification process using machine learning is a Lithology

potentially intuitive and efficient way to facilitate facies interpretation based on cheraentstn
large-volume data. An expert traditionally performs manual interpretation of
lithofacies from wireline log data. T N

Classification

The automated Machine
Learning process to predict
field pattern type recognition

The Al assistant will squest
the best approach to follow to
the domain experts.

Provide workflow automation
that reduces work time and
raises efficiency with real-time
interpretation.

Lithology

Classification Model
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Lithology-Fluids Pattern Recognition

Typical Input Data: Facies-Fluids: Feature Engineering

Table 1 — LWD Curves Table 2 — Derived Features

Logs While Drilling

(LWD) Gas Components Drilling Params.
LHR C1+C2IC3+IC4+nCA#ICS+nCS
Gamma Ray Total Gas (TG) Weight on Bit (WOB) cH (Ca+nCA+ICENCSCE
Rate of Penetration | ' ;
Resistivity Shallow Methane (C1) (ROP) WH C2+C3+iCA+nC4+iC5+nCS/C1+C2+ C3+iC4+nCA+IC5+nCS
Resisti g Ethan C2 ' clic2 c1ic2
esistivity Deep thane (C2) p— s
Neutron Propane (C3) ccs c2ic3
Density IsoButane (iC4) %C1 (C1/C1+C2+C3+C4+nCA+C5+nCS) 100
NormalButane (nC4) %C2 (C2UC14+C24CHHTA+ACA+CE+NCS) 100
%C3 CIIC1+C2+CI+CA+nCA+CS+nCS) 100
IsoPentane (iC5) ) : ) ) :
%04 (iC4+nC4/C1+C2+C3+C4+nCA+ICS+nC5 1 100
NormalPentane (nCS) %CS (IC5+nCHCT+C2+CI+ICA+nCA+ICH+nCS 100
preasrorms e
and L ] =]

With an and L Fluid Pattern
Recognition Assistant: A Case History in a Clastic Reservoir in West Africa

15




BAUERBERG KLETN

TRAINING & CONSULTING

Case Studies

Lithology-Fluids Pattern Recognition

Fluid and rock identification from well log analysis — LWD and MWD
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Lithology-Fluids Pattern Recognition

Fluid and rock identification from well log analysis — LWD and MWD
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Module 09
Case Studies: Time-Series Analysis and Production
Forecasting
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This Module introduces the six principles of forecasting in a time-series dataset.

We shall implement these principles in the case study to optimize production data collected in a brownfield.

The SEMMA process takes on a journey to analyze temporal data using several time-series statistical and machine-learning
methods. The well, reservoir, and field production forecasting uses spatial and temporal data to optimize the re-
engineering of a brownfield.

We shall show the use of both supervised and unsupervised techniques. And we shall introduce a deep neural network
architecture called a Recurrent Neural Network for time-series analysis. RNNs are discussed in Module 05.
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