WELL TEST ANALYSIS

- Section 1: Introduction Aims and Objectives of Well Testing
- Section 2: Well Test Interpretation Methodology
- **Section 3:** Interpretation Methods
- **Section 4:** Interpretation Models
- **Section 5:** Gas and Multi-phase
- **Section 6:** Test Design

Section 7: Conclusions and Recommendations

Nomenclature

k mD permeability vol/vol Formation volume factor B viscosity ср μ S_o, S_a, S_w fraction oil, gas, water saturation $S_{o} + S_{a} + S_{w} = 1$ 1/psi compressibility С 1/psi Total compressibility **C**_t $c_t = S_o c_o + S_a c_a + S_w c_w + c_f$

WELL TEST ANALYSIS

PART OF THE RESERVOIR MANAGEMENT PROCESS

FOR

1- RESERVOIR CHARACTERISATION

2-WELL PERFORMANCE

RESERVOIR MANAGEMENT PROCESS

Gringarten *et al.*, SPE 64311 ATCE Dallas(Oct. 2000)

Why do we test wells?

Well performance

- Fluid samples
- Permeability
- Well damage or stimulation (skin effect)
- Average reservoir pressure
- Reservoir heterogeneities
- Reservoir hydraulic connectivity
- Distance to boundaries

Reservoir performance

WELL PERFORMANCE

WELL PERFORMANCE

- The purpose of well performance analysis (production system analysis, or Nodal analysis) is to:
- (1) Assess the current production Q from the reservoir (IPR) and well (Intake) (and possibly surface facilities) together
- (2) Evaluate all possible solutions for increasing this production

SIMULATION OF

BEHAVIOUR

Gringarten

RESERVOIR MODEL

Well

Deve

Pip

Reservoir

nent Scenario

& Facilities

Model

(3) Determine the optimal solution, both from a technical and economic point of view

NODAL ANALYSIS[™] PRODUCTION OPTIMISATION

Mach, Proano, and Brown:"A Nodal Approach for Applying Sytems Analysis to the Flowing and Artificial Lift of Oil or Gas Well," SPE 8025 (March 1979)

Improve Well (perfs, tubing,...)

NODAL ANALYSIS™

IPR function of Interpretation Model

Double Porosity Behaviour

RESERVOIR CHARACTERISATION

RESERVOIR CHARACTERISATION

The purpose of reservoir characterisation is to define a reservoir model that honours both static and dynamic knowledge about the reservoir.

3D Reservoir Modelling

1. Structural Model

2. Grid Model

Property Modelling

 aligned with stratigraphy and deposition; must be as regular as possible

17

3. Property Model

Courtesy of Paradigm

4. Upscaling

Grid for Property Modeling

Grid for Flow Simulation

 aligned with major flow direction, faults; can be irregular (tartan, Local Grid Refinement)

3D Reservoir Modelling Uncertainty

- "Uncertainty is Everywhere"
 - Geometry
 - Facies
 - Petrophysical Properties

- Fluid Contacts
- Fluid Properties
- Well Data
- Modelling Parameters

Example:Structural Uncertainty

- Interpretation (picking)
- Time-to-Depth
- Migration
- Well picks Courtesy of Paradigm

Leads to errors in Volume Estimation and Target Picking. Importance is reduced in later part of reservoir development.

UNCERTAINTY IN RESERVOIR MANAGEMENT

RESERVOIR CHARACTERISATION

RESERVOIR CHARACTERISATION

The purpose of reservoir characterisation is to define a reservoir model that honours both static and dynamic knowledge about the reservoir.

Well testing belongs to the <u>dynamic</u> part of the characterisation process. The contribution of well testing to that process is the well test interpretation model.

Oil production history

Mau and Edmundson "Groundbreakers: the story of oilfield technology and the people who made it happen" FastPrint Publishing 2105

Through Porous Media

BP-statistical-review-of-world-energy-2015

Well Interpretation history

http://www.spe.org/industry/history/oral_archives.php

25

WELL TEST ANALYSIS MILESTONES

50's	Straight lines	Laplace Transform	Homogeneous Reservo Behaviour (Radial Flow)	ir)
Late 60's Early 70's	Pressure Type Curve Analysis	Green's Functions	Near Wellbore Effects	
Late 70's	Type Curves with Independent Variables	Integrated Methodology Stehfest Algorithm	Double Porosity Behaviour	
Early 80's	Derivatives	Computerised Analysis	Heterogeneous Reservoir Behaviour and Boundaries	
90's		Computer Aided Analysis Downhole Rate Measurements Integration with Interpretation Models from other Data	Multilayered Reservoir	©Alain C. Gring
Early 00's		Deconvolution	Enhanced Radius of Investigation Boundaries	garten 2015 26

WELL TEST ANALYSIS NAMES

ater	Theis	Type curve analysis	mid 1930's
	lacob	"MDH" analysis	mid 1940's
	Muskat	Theory equations	late 1930's
0	Van Evordingon, Hurst	Lanlace transforms: Wellbore storage: Skin	early 1950's
Õ	Miller Dyos Hutchinson	"MDH" analysis: n vallage, At	early 1950's
		(1) (1)	early 1950's
	Motthewa Brane Hezebreek	Homer analysis: β vs. log ($lp + \Delta l/\Delta l$	early 1950's
	Watthews, Brons, Hazebroek		
	H. J. Ramey, Jr	weil lest analysis solutions, early time analysis,	mid 1960 S -
	Demovie Texas ASM students:	average reservoir pressure	early 1990 s
tie	Ramey's Texas A&W students:	Gas psoudo prossuro	mid 1060's
ls.		Wellborg storage and skin type curves	late 1960's
Ve	Agarwai, Al-Hussailly	Wendore Storage and Skin type curves	
Jn I	Ramey's Stanford students:	Groop's functions: high conductivity fractures	mid 1070's
$\overline{}$	Gringarten	Green's functions, high conductivity fractures	Iniu 1970's
	Cinco-Ley		
	Flopetrol-Schlumberger	Wellbore storage and skin type curve	late 1970's
٦ <mark>٥</mark>	Gringarten, Bourdet, Whittle	Double porosity type curves	late 1970's
O		Interpretation methodology and software	late 1970's
'ice		Derivative analysis and type curves	early 1980's
e7	Schlumberger		late 1980's
S	Eligh-Economides, Kuchuk, Stewart	Multilayer analysis, deconvolution (attempts)	mid 1980's
-	Elf: Daviau	Horizontal well	mid 1980's
	Others		
	Earlougher (1977), Hantush, Horne		
	Kamal, Kumar, Larsen, McKinley,		
	Raghavan, Reynolds,		
	Russell & Truitt (1966)		

27

ENVIRONMENTAL CHANGES

- Before 1970 Mechanical Pressure Gauges
- **1975** Electronic Pressure Gauges
- **1980** Surface Pressure Read-out
- **1980**Horizontal Wells
- **1983** Off-the-Shelf Well Test Analysis Software
- **1986 Powerful Personal Computers**
- Late1990's Permanent downhole pressure gauges

Time lag between theory and practice: 5-10 years

1980's BREAKTHROUGH

FROM

UNCONNECTED METHODS GIVING DIFFERENT RESULTS

ΤΟ

AN INTEGRATED METHODOLOGY BASED ON SIGNAL THEORY

Gringarten, Bourdet, Landel and Kniazeff 54th ATCE Las Vegas(Sept., 1979)

30

WELL TEST ANALYSIS Study of WELL - RESERVOIR BEHAVIOUR

Summary of Test Types

Open Hole Test

32

Operation Segmentation & Drivers

©Alain C. Gringarten 2015

WELL TEST ANALYSIS Study of WELL - RESERVOIR BEHAVIOUR

- AND O ARE KNOWN: FIND S **IDENTIFICATION INVERSE PROBLEM, NON UNIQUE SOLUTION**
 - **Model diagnostic** I = (1, 2, 3), O = 6, S = + or *
- **I AND S ARE KNOWN:** FIND O CONVOLUTION **DIRECT PROBLEM, UNIQUE SOLUTION**
 - **Model verification** I = (1, 2, 3), S = +, O = 6Design
- **SAND O ARE KNOWN:** FIND
 - DECONVOLUTION
 - **Constant rate conversion**

INVERSE PROBLEM, NON UNIQUE SOLUTION

O = 6, S = +, I = (1, 5) or (4,2) or (3,3)

INTERPRETATION PROCESS

STEP 1: MODEL IDENTIFICATION

Find a MODEL S' which behaves in the same way as S

 \rightarrow S' \rightarrow O' O' has the same shape as O

INVERSE PROBLEM

Non-unique solution

To reduce the non uniqueness:

- more test data: pressure and rate
- checking procedure on model
- consistency with geophysics, geology, petrophysics, etc.

MODEL IDENTIFICATION IS A PATTERN RECOGNITION, INVERSE PROBLEM:

- **Given the data (well test and others)**,
- knowing characteristic shapes created by well defined flow regimes,
- identify which flow regimes could create this type of test data

INTERPRETATION PROCESS

STEP 2: MODEL PARAMETER CALCULATION

Adjust the parameters of the MODEL S' so that

O'\equivO O' become identical to **O**

DIRECT PROBLEM

Unique solution

- Calculated parameters independent of the method used:
- straight line techniques
- type curve matching, pressure and/or derivative
- non-linear regression
INTERPRETATION PROCESS

STEP 3: MODEL VERIFICATION

Verify the consistency of the interpretation model:

- matching with test observed data (log-log, Horner, simulation)
- matching with results from other well tests
- matching with other knowledge (geology, petrophysics, cores, fluid, completion,...)
- common sense (range of parameter values)

MODEL VERIFICATION IS A DIRECT PROBLEM

given the data (well test and others),

given a well test interpretation model,

verify that the well test interpretation model is consistent with the data

INTERPRETATION PROCESS

COMPONENTS OF THE WELL TEST INTERPRETATION MODEL

NEAR WELLBORE	RESERVOIR	BOUNDARY
EFFECTS	BEHAVIOUR	EFFECTS

DATA INTERPRETATION MODELS DESCRIBE DIFFERENT ASPECTS OF RESERVOIR

Understanding the cause of these contrasts require the knowledge of interpretation models from other types of data

DIFFERENT DATA SEE DIFFERENT SCALES

Relative Scale of Permeability Measurements

DIFFERENT INTERPRETATION MODELS YIELD DIFFERENT INFORMATION ON THE RESERVOIR MODEL

COMPONENTS OF THE WELL TEST INTERPRETATION MODEL

NEAR WELLBORE	RESERVOIR	BOUNDARY
EFFECTS	BEHAVIOUR	EFFECTS

BASIC RESERVOIR BEHAVIOURS

1- HOMOGENEOUS BEHAVIOUR One mobility kh/μ One storativity φc,h

More than one mobility, storativity

2-Porosity Fissured Multilayered

COMPONENTS OF THE WELL TEST INTERPRETATION MODEL

NEAR WELLBORE	RESERVOIR	BOUNDARY
EFFECTS	BEHAVIOUR	EFFECTS

NEAR WELLBORE EFFECTS

BOUNDARIES (Cross Section)

BOUNDARIES (Top view)

©Alain C. Gringarten 2015

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage Skin Fractures Partial Penetration Horizontal Well	Homogeneous Heterogeneous -2-Porosity -2-Permeability -Composite	Specified Rates Specified pressure Leaky boundary
EARLY TIMES	MIDDLE TIMES	LATE TIMES

WELL TEST INTERPRETATION PROCESS

ANALYSIS TECHNIQUES

Value tied to power in Identification and Verification

		ANALYSIS METHOD	IDENTIFICATION	VERIFICATION
50	's	Straight lines	Poor	None
70 [:]	'S	Pressure Type Curves	Fair (limited)	Fair to Good
80	's	Pressure Derivative	Very Good	Very Good
00	's	Deconvolution	Much better	Same as derivative
	7	Multiwell Deconvolution	Much, much better	Same as derivative
Ne	xt	?	>>>	>>>

RESERVOIR PARAMETERS

Interpretation Model controls number and meaning of parameters

Homogeneous Behaviour	Double Porosity Behaviour	Double Permeability Behaviour
kh permeability-thickness S skin (<0, 0, >0) (p _{av}) _i initial pressure	kh most permeable medium S (<-3.5, -3.5, >-3.5) (p _{av}) _i	kh total system S (<-3.5, -3.5, >-3.5) (p _{av}) _i
C wellbore storage Surface : 10 ⁻² Bbl/psi Downhole: 10 ⁻⁴ Bbl/psi	C ω storativity ratio λ interporosity flow coefficient	C ω λ (kh) _i / (kh) _t

MODEL RESPONSE, FIRST DRAWDOWN after stabilisation

Time from start of drawdown

MODEL RESPONSE IN THE FIRST DRAWDOWN

Signal in drawdown: $(\Delta p)_{wf} = [p_i - p_{wf}(\Delta t)]$

 $(\Delta p)_{wf} = f[\Delta t, (kh, S, C, ...), \Delta q, (r_w, \phi, \mu, c_t, B, ...)]$

Dimensionless parameters: $\begin{array}{l} [(\Delta p)_{wf}]_{D} = \mathsf{PM} (\mathsf{kh}, \Delta q, \mathsf{B}, \mu, ...) \quad \Delta p \\ [(\Delta t)]_{D} = \mathsf{TM} (\mathsf{kh}, \phi, \mu, \mathsf{c}_{\mathsf{t}}, \mathsf{r}_{\mathsf{w}}, ...) \quad \Delta t \end{array}$

$$[(\Delta p)_{wf}]_D = f_D(\Delta t_D, S, C_D, ...) \text{ or } p_D = p_D(t_D)$$

 $[(\Delta p)_{wf}]_{D} = p_{D}(t_{D})$ is called a Drawdown Type Curve \Box Usually plotted as: $\log [(\Delta p)_{wf}]_{D}$ vs $\log t_{D}$

DRAWDOWN TYPE CURVES

Examples of Dimensionless Variables

(all parameters are expressed in Engineering Oil Field (EOF) units.)

DRAWDOWN TYPE CURVES

Example of p_D(t_D) function

INTERFERENCE TEST IN AN INFINITE RESERVOIR WITH HOMOGENEOUS BEHAVIOUR:

 $Ei(-x) = -\int_{x}^{\infty} \frac{e^{-u}}{u} du$

Ei represents the Exponential Integral:

Data measured in an observation well at a distance *r* from the production well

$$p_{D} = \frac{kh}{141.2\,\Delta q \,B\,\mu} \Delta p \qquad t_{D} = \frac{0.000264 \ k}{\phi \mu \ c_{t} r_{w}^{2}} \Delta t \qquad r_{D} = \frac{r}{r_{w}}$$

DRAWDOWN TYPE CURVES

Examples of Independent Variables

(all parameters are expressed in Engineering Oil Field (EOF) units.)

INTERFERENCE TEST IN AN INFINITE RESERVOIR WITH HOMOGENEOUS BEHAVIOUR:

Independent variables, unique match

$$p_D = \frac{kh}{141.2\Delta q \, B \, \mu} \Delta p$$

 $\frac{t_D}{r_D^2} = \frac{0.000264 k}{\phi \mu c_t r^2} \Delta t$

Dimensionless parameters, non-unique match

$$p_D = \frac{kh}{141.2\Delta q\,B\mu}\Delta p$$

$$t_D = \frac{0.000264 \, k}{\phi \mu \, c_t r_w^2} \Delta t$$

$$r_D = \frac{r}{r_w}$$

DRAWDOWN TYPE CURVES Examples of Independent Variables

(all parameters are expressed in Engineering Oil Field (EOF) units.)

WELL WITH WELLBORE STORAGE AND SKIN IN AN INFINITE RESERVOIR WITH HOMOGENEOUS BEHAVIOUR:

Dimensionless parameters, non-unique match

$$p_D = \frac{kh}{141.2\,\Delta q\,B\,\mu}\,\Delta p$$

$$t_D = \frac{0.000264 \, k}{\phi \mu \, c_t r_w^2} \Delta t$$

$$C_D = \frac{0.8936 C}{\phi c_t h r_w^2}$$
(S)

Independent variables, unique match

$$p_D = \frac{kh}{141.2\Delta q B \mu} \Delta p$$
$$\frac{t_D}{C_D} = 0.000295 \frac{kh}{\mu C} \Delta t$$
$$C = \frac{25}{2} \frac{0.8936}{2} C = \frac{25}{2}$$

$$C_D e^{2S} = \frac{0.8936}{\phi c_t h r_w^2} C e^{2S}$$

MODEL RESPONSE, BUILD-UP AFTER FIRST DRAWDOWN

Time from start of drawdown

BUILD-UP TYPE CURVE BEHAVIOUR

 $[(\Delta p)_{ws}]_{D} = p_{D}(\Delta t)_{D} + [p_{D}(t_{p})_{D} - p_{D}(t_{p} + \Delta t)_{D}]$

• Δt small compared with \mathbf{t}_p

- $[\mathbf{p}_{\mathsf{D}}(\mathbf{t}_{\mathsf{p}} + \Delta \mathbf{t})_{\mathsf{D}} \mathbf{p}_{\mathsf{D}}(\mathbf{t}_{\mathsf{p}})_{\mathsf{D}}] \longrightarrow \mathbf{0}$
- $[(\Delta p)_{ws}]_{D} = p_{D}(\Delta t)_{D}$
- Δt large compared with t_p
- $p_D(t_p + \Delta t)_D \longrightarrow p_D(\Delta t)_D]$
- $[(\Delta p)_{ws}]_{D} \rightarrow p_{D}(t_{p})_{D}$
- in between
- $[\mathbf{p}_{\mathsf{D}}(\mathbf{t}_{\mathsf{p}})_{\mathsf{D}} \mathbf{p}_{\mathsf{D}}(\mathbf{t}_{\mathsf{p}} + \Delta \mathbf{t}] < \mathbf{0}$

 $[(\Delta p)_{ws}]_{D} < p_{D}(\Delta t)_{D}$

MODEL RESPONSE, SUBSEQUENT FLOW PERIOD

MULTIRATE TYPE CURVE BEHAVIOUR

 $(\Delta p)_{D} = p_{D}(\Delta t)_{D}$ + $\sum_{i=1}^{n-1} [(q_{i} - q_{i-1})/(q_{n-1} - q_{n})] [p_{D}(\sum_{j=i}^{n-1} \Delta t_{j})_{D} - p_{D}(\sum_{j=i}^{n-1} \Delta t_{j} + \Delta t)_{D}]$

□ Δt small compared with t_p [bracket term] → 0 [(Δp)_{ws}]_D = $p_D(\Delta t)_D$

□ [bracket term] >0 or <0

MODEL RESPONSE, BUILD-UP AFTER FIRST DRAWDOWN

 $[(\Delta p)_{H}]_{D} = p_{D}(t_{D} + \Delta t)_{D} - p_{D}(\Delta t)_{D}$

 $[(\Delta p)_H]_D = p_D(t_p + \Delta t)_D - p_D(\Delta t)_D$ Horner Type Curve

⁽³⁾ Usually plotted as: $[(\Delta p)_H]_D$ vs Horner time $f(t_p + \Delta t)_D - f(\Delta t)_D$

Radial Flow HORNER Time

$$p(\Delta t) = p_i - \frac{1}{\mathrm{PM}} \left\{ p_D \left[\mathrm{TM} \left(t_p + \Delta t \right) \right] - p_D \left(\mathrm{TM} \Delta t \right) \right\}$$

If $p_D(TM\Delta t)$ can be approximated by a log (Radial flow):

$$p_D(TM \ \Delta t) = \frac{1}{2} (\ln TM \ \Delta t + 0.80907) = 1.151 (\log TM \ \Delta t + 0.35)$$

 $p_{D}[TM(t_{p} + \Delta t)]$ can also be approximated by a log:

 $p_{D}\left[TM\left(t_{p}+\Delta t\right)\right]=1.151\left[\log TM\left(t_{p}+\Delta t\right)+0.35\right]$

HORNER TYPE CURVE BUILD-UP AFTER FIRST DRAWDOWN

MODEL RESPONSE, SUBSEQUENT FLOW PERIOD

$$(\Delta p)_{GH} = \sum_{i=1}^{n-1} [(q_i - q_{i-1})/(q_{n-1} - q_n)] p_D(\sum_{j=i}^{n-1} \Delta t_j + \Delta t)_D - p_D(\Delta t)_D$$
Generalised Horner Type Curve usually plotted as:

$$(\Delta p_{GH})_D \text{ vs } \sum_{i=1}^{n-1} [(q_i - q_{i-1})/(q_{n-1} - q_n)] f(\sum_{j=i}^{n-1} \Delta t_j + \Delta t) - f(\Delta t)$$
(Superposition time)

GENERALISED HORNER TYPE CURVE

GENERALISED HORNER TYPE CURVE

ANALYSIS TECHNIQUES

Once a MODEL has been identified:

- The Model response equations: provide relationships between data and model
- They apply to:
 - entire <u>test</u>
 - Individual <u>flow periods</u> in the test
 - Individual <u>flow regimes</u> within a flow period
- They are used to calculate model parameters (manual or computer "fit" or "match")
- They are used to check analysis results (verification)

If **p**_D represents the equation for the <u>entire</u> model:

LOG-LOG ANALYSIS of data from first drawdown with drawdown type curves

If p_D represents the equation of a <u>specific flow regime</u> only:

SPECIALISED ANALYSES of data from first drawdown

(1.b) From Build-up Type Curve: $[(\Delta p)_{ws}]_D = p_D(\Delta t_D) + [p_D(t_p)_D - p_D(t_p + \Delta t)_D]$

78

(1.c) From Multirate Type Curve:

 $(\Delta p)_{\mathsf{D}} = \mathsf{p}_{\mathsf{D}}(\Delta t)_{\mathsf{D}} + \sum_{i=1}^{n-1} \left[(\mathsf{q}_{i} - \mathsf{q}_{i-1})/(\mathsf{q}_{n-1} - \mathsf{q}_{n}) \right] \left[\mathsf{p}_{\mathsf{D}}(\sum_{j=i}^{n-1} \Delta t_{j})_{\mathsf{D}} - \mathsf{p}_{\mathsf{D}}(\sum_{j=i}^{n-1} \Delta t_{j} + \Delta t)_{\mathsf{D}} \right]$

Data

 $\mathsf{PM} \left[\mathsf{p}_{\mathsf{w}}(\Delta t) - \mathsf{p}_{\mathsf{w}}(\Delta t=0) \right] \equiv \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Delta t) + \Sigma_{i=1}^{n-1} \left[(\mathsf{q}_{i} - \mathsf{q}_{i-1}) / (\mathsf{q}_{n-1} - \mathsf{q}_{n}) \right] \left\{ \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Sigma_{j=i}^{n-1} \Delta t_{j}) - \mathsf{p}_{\mathsf{D}}[\mathsf{TM}(\Sigma_{j=i}^{n-1} \Delta t_{j} + \Delta t)] \right\}$

Selected Model Unknown model parameters:

If p_D represents the equation for the <u>entire</u> model: *LOG-LOG ANALYSIS* of data from a subsequent flow period with *multirate type curves*

 $\frac{|\mathbf{F} \Sigma_{i}^{n} - 1}{|\mathbf{P}_{w} (\Delta t) - \mathbf{p}_{w} (\Delta t = 0)|} \{ \mathbf{p}_{\mathsf{D}} (\mathsf{TM} \Sigma_{j}^{n} - 1 \Delta t_{j}) - \mathbf{p}_{\mathsf{D}} [\mathsf{TM} (\Sigma_{j}^{n} - 1 \Delta t_{j} + \Delta t)] \} \text{ can be neglected,} \\ \mathbf{PM} | \mathbf{p}_{w} (\Delta t) - \mathbf{p}_{w} (\Delta t = 0)| = \mathbf{p}_{\mathsf{D}} (\mathsf{TM} \Delta t) \text{ Drawdown type curve}$

 Log-log analysis of subsequent data with drawdown type curves (if p_D represents the equation for the <u>entire</u> model)
 Specialised analyses of subsequent flow period data (if p_D represents the equation of a <u>specific flow regime</u> only)

If p_D represents the equation of a <u>specific flow</u> regime only:

Horner analysis of data from the build-up following the first drawdown

(2.b) From Generalised Horner Type Curve:

 $(\Delta p)_{GH} = \sum_{i=1}^{n-1} [(q_i - q_{i-1})/(q_{n-1} - q_n)] p_D(\sum_{j=1}^{n-1} \Delta t_j + \Delta t)_D - p_D(\Delta t)_D$

If p_D represents the equation of a <u>specific flow</u> regime only:

Generalised Horner analysis (Superposition analysis) of data from a subsequent flow period

LOG-LOG ANALYSIS

(1) Analysis by "hand"

 $\mathsf{PM}\left[\mathsf{p}_{\mathsf{w}}(\Delta t) - \mathsf{p}_{\mathsf{w}}(\Delta t=0)\right] \equiv \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Delta t)$

Data, $[p(\Delta t) - p(\Delta t=0)]$ vs Δt , are "matched" with:

a Drawdown Type Curve for the entire applicable interpretation model, $p_D(\Delta t)_D$ vs $(\Delta t)_D$, over an entire flow period

Yields <u>all</u> the interpretation model parameters (i.e., ALL analysis results)

Applies to build-up or multirate data
<u>as long as</u> {p_D (TM t_p) - p_D[TM (t_p +∆t)]} <u>can be neglected</u>

Type Curve Match for a Well with Wellbore Storage and Skin in a Reservoir of Infinite Extent with Homogeneous Behaviour

LOG-LOG ANALYSIS

(2) Analysis by computer

 $\mathsf{PM} \left[\mathsf{p}_{ws}(\Delta t) - \mathsf{p}_{ws}(\Delta t=0) \right] \implies \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \ \Delta t) + \{\mathsf{p}_{\mathsf{D}} \left(\mathsf{TM} \ t_{\mathsf{p}}\right) - \mathsf{p}_{\mathsf{D}}[\mathsf{TM} \ (t_{\mathsf{p}} + \Delta t)] \}$

 $|\mathsf{PM}| \mathsf{p}_{\mathsf{w}}(\Delta t) - \mathsf{p}_{\mathsf{w}}(\Delta t=0)| = \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Delta t) + \Sigma_{i}^{n} \mathsf{p}_{-1}^{-1} [(\mathsf{q}_{i} - \mathsf{q}_{i-1})/(\mathsf{q}_{n-1} - \mathsf{q}_{n})] \{\mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Sigma_{j}^{n} \mathsf{p}_{-1}^{-1} \Delta t_{j}) - \mathsf{p}_{\mathsf{D}}[\mathsf{TM}(\Sigma_{j}^{n} \mathsf{p}_{-1}^{-1} \Delta t_{j} + \Delta t)] \}$

Data, $|\mathbf{p}(\Delta t) - \mathbf{p}(\Delta t=0)|$ vs Δt , are "matched" with

a Build-up (or Multirate) Type Curve for the entire applicable interpretation model , $p_D(\Delta t)_D + p_D(t_p)_D - p_D(t_p + \Delta t)_D$ (or multirate equivalent) vs $(\Delta t)_D$, over an entire flow period

- Yields <u>all</u> the interpretation model parameters (i.e., ALL analysis results)
- Applies to build-up (or multirate) data

Match for a Well with Wellbore Storage and Skin in a Closed Rectangular Reservoir with Homogeneous Behaviour

85

STRAIGHT LINE ANALYSES

(1) Specialised analyses

$$\mathsf{PM}\left[\mathsf{p}_{\mathsf{w}}(\Delta t) - \mathsf{p}_{\mathsf{w}}(\Delta t=0)\right] \equiv \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Delta t)$$

where $p_D(\Delta t)_D$ corresponds to a specific flow regime:

Wellbore storage:
$$p_D = \frac{t_D}{C_D}$$
Linear flow: $p_D = \left(\pi \ t_{Df}\right)^{1/2}$ Finite conductivity fracture bilinear flow: $p_D = 2.45 \left(k_{fD} \ w_D\right)^{-1/2} \left(t_{Df}\right)^{1/4}$ Spherical flow: $p_{SPH D} = \frac{1}{2} \left[1 - \left(\pi \ t_{SPH D}\right)^{-1/2} \right]$ Radial flow: $p_D = 1.151 \left(\log t_{De} + 0.35\right)$ Pseudo-steady state flow: $p_D = 2\pi \frac{r_{wa}^2}{A} t_{De} + 1.151 \left[\log \frac{A}{r_{wa}^2} - \log C_A + 0.786 \right]$

□ Data in a flow period, $[p(\Delta t) - p(\Delta t=0)]$, are plotted vs the corresponding time function $f(\Delta t)$ (resp., Δt , $\Delta t^{1/2}$, $\Delta t^{1/4}$, $\Delta t^{-1/2}$, $\log \Delta t$ and Δt)

□ A straight line is obtained where the specific flow regime dominates. Slope and intercept yield flow regime-specific model parameters

□ Applies to build-up or multirate data <u>if, and only</u> if {p_D (TM t_p) - p_D[TM ($t_p + \Delta t$)]} can be neglected (i.e. [p(Δt) - p(Δt =0)] match a drawdown type curve)

STRAIGHT LINE ANALYSES

(2) Horner (superposition) analyses

 $\mathsf{PM}\left[(\mathsf{p}_{\mathsf{av}})_{\mathsf{i}} - \mathsf{p}_{\mathsf{ws}}(\Delta t)\right] \equiv \mathsf{p}_{\mathsf{D}}\left[\mathsf{TM}\left(t_{\mathsf{p}} + \Delta t\right)\right] - \mathsf{p}_{\mathsf{D}}\left[\mathsf{TM}\left(\Delta t\right)\right]$

 $\mathsf{PM}\left[(\mathsf{p}_{\mathsf{av}})_{i} - \mathsf{p}_{\mathsf{w}}(\Delta t)\right] \equiv \sum_{i=1}^{n-1} \left[(\mathsf{q}_{i} - \mathsf{q}_{i-1})/(\mathsf{q}_{n-1} - \mathsf{q}_{n})\right] \mathsf{p}_{\mathsf{D}}\left[\mathsf{TM}(\sum_{j=i}^{n-1} \Delta t_{j} + \Delta t)\right] - \mathsf{p}_{\mathsf{D}}(\mathsf{TM} \Delta t)$

where $p_D(\Delta t)_D$ corresponds to a specific flow regime:

Linear flow: $p_D = \left(\pi t_{Df}\right)^{1/2}$

Finite conductivity fracture bilinear flow:

Spherical flow: $p_{\text{SPH }D} = \frac{1}{2} \left[1 - \left(\pi t_{\text{SPH }D} \right)^{-1/2} \right]$

 $p_D = 2.45 (k_{fD} w_D)^{-1/2} (t_{Df})^{1/4}$

Radial flow: $p_D = 1.151(\log t_{De} + 0.35)$

- □ Data in a flow period, $p(\Delta t)$, are plotted vs $f(t_p + \Delta t) f(\Delta t)$ where $f(\Delta t)$ is the corresponding time function (resp., $\Delta t^{1/2}$, $\Delta t^{1/4}$, $\Delta t^{-1/2}$ and log Δt)
- A straight line is obtained where the specific flow regime dominates. Slope and intercept yield flow regime-specific model parameters and (p_{av})_i

□ Applies to build-up or multirate data

VERIFICATION

(1) Log-log Match

 $\mathsf{PM} |\mathsf{p}_{\mathsf{w}}(\Delta t) - \mathsf{p}_{\mathsf{w}}(\Delta t=0)| \stackrel{?}{=} \mathsf{p}_{\mathsf{D}}(\Delta t)_{\mathsf{D}} + \Sigma_{i}^{n} - 1 [(q_{i} - q_{i-1})/(q_{n-1} - q_{n})] \{\mathsf{p}_{\mathsf{D}}(\mathsf{TM} \ \Sigma_{j}^{n} - 1 \Delta t_{j})_{\mathsf{D}} - \mathsf{p}_{\mathsf{D}}[\mathsf{TM} \ \Sigma_{j}^{n} - 1 \Delta t_{j} + (\Delta t)_{\mathsf{D}}]\}$

Log-log match verification plot

89

VERIFICATION

(2.1) Horner Match (build-up following the first drawdown)

PM [(p_{av})_i - $p_{ws}(\Delta t)$] vs log ($t_p + \Delta t$)/ Δt

is compared with

 $p_D [(t_p + \Delta t)_D] - p_D [(\Delta t)_D] vs log (t_p + \Delta t)_D / (\Delta t)_D$

Dimensionless Horner data PM [(p_{av})_i - $p_{ws}(\Delta t)$] vs. log[$\Delta t/(t_p + \Delta t)$] $\stackrel{?}{=} p_D$ [($t_p + \Delta t$)_D] - p_D [(Δt)_D] vs. log[$\Delta t/(t_p + \Delta t)$]_D Data

Calculated parameters

(2.2) Superposition Match (subsequent flow period)

 $\mathsf{PM} [(\mathsf{p}_{\mathsf{av}})_{\mathsf{i}} - \mathsf{p}_{\mathsf{w}}(\Delta \mathsf{t})] \stackrel{?}{=} \Sigma_{\mathsf{i}}^{\mathsf{n}} - 1 [(\mathsf{q}_{\mathsf{i}} - \mathsf{q}_{\mathsf{i}})/(\mathsf{q}_{\mathsf{n}} - 1} - \mathsf{q}_{\mathsf{n}})] \mathsf{p}_{\mathsf{D}} [(\Sigma_{\mathsf{j}}^{\mathsf{n}} - 1 \Delta \mathsf{t}_{\mathsf{j}} + \Delta \mathsf{t})_{\mathsf{D}}] - \mathsf{p}_{\mathsf{D}}(\Delta \mathsf{t})_{\mathsf{D}}]$

Horner match verification plot, build-up

VERIFICATION

(3) Simulation

ANALYSIS PROCESS: Model identification, Parameter calculation and model verification

(1) Analysis by "hand"

- Identify the interpretation model from its flow regime components
- Select a "published drawdown type curve" representing the model behaviour
- Calculate all the interpretation model parameters by matching data, [p(∆t) - p(∆t=0)] vs ∆t, with the selected published drawdown type curve (log-log analysis)
- Calculate flow regime-specific model parameters with applicable specialised and Horner plots
- Verify consistency between log-log, specialised and Horner analyses
 - Verify by matching with Horner type curve

ANALYSIS PROCESS: Model identification, Parameter calculation and model verification

(2) Analysis by computer

Identify the interpretation model from its flow regime components

- Calculate flow regime-specific model parameters with applicable specialised plots
- Verify quality of match on multirate type curve and (generalised) Horner type curve
- Verify quality of match by simulating the entire test

Example of consistent analysis (build-up)

©Alain C. Gringarten 2015

Example of inconsistent analysis (drawdown)

97

Example of non-unique analysis

