WELL TEST INTERPRETATION MODELS

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage Skin Fractures Partial Penetration Horizontal Well	Homogeneous Heterogeneous -2-Porosity -2-Permeability -Composite	Infinite extent Specified Rate Specified Pressure Leaky Boundary
EARLY TIMES	MIDDLE TIMES	LATE TIMES

WELL TEST INTERPRETATION MODELS

NEAR WEI EFFECTS	LLBORE	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore St Skin Fracture Partial Penetration Horizontal V	vell	Homogeneous Heterogeneous -2-Porosity -2-Permeability -Composite	Infinite extent Specified Rate Specified Pressure Leaky Boundary
EARLY TIM	ES	MIDDLE TIMES	LATE TIMES

Wellbore Storage and Skin, Homogeneous Behaviour, Infinite Acting

Wellbore Storage and Skin, Homogeneous Behaviour, Infinite Acting

©Alain C. Gringarten 2015

WELL TEST INTERPRETATION MODELS

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage Skin	Homogeneous Heterogeneous	Infinite extent Specified Rate
Fracture Partial Penetration Horizontal Well	-2-Porosity -2-Permeability -Composite	Specified Pressure Leaky Boundary
EARLY TIMES	MIDDLE TIMES	LATE TIMES

INTERFERENCE TEST IN AN INFINITE RESERVOIR WITH HOMOGENEOUS BEHAVIOUR:

Production Observation ≪---->O **Dimensionless parameters, non-unique match** 10 Dimensionless Pressure, p_D $p_D = \frac{kh}{141.2\Delta q \, B \, \mu} \, \Delta p$ 1 10 $t_D = \frac{0.000264 \, k}{\phi \mu \, c_t r_w^2} \Delta t$ 10⁻² $f_{\rm D} = 10^2$ = 10 ≡ 103 = 104 11 <u>_</u> $r_D = \frac{r}{r_w}$ 10-3 10⁻² **10**⁻¹ 10² 10³ **10**⁴ 10 1 Dimensionless time, t_D 10 Independent variables, unique match Dimensionless Pressure, p_D $p_D = \frac{kh}{141.2\Delta q \, B \, \mu} \Delta p$ 1 10 $t_D / r_D^2 = \frac{0.000264 \, k}{\phi \, \mu \, c_t r^2} \Delta t$ 10⁻² 10⁻³ 10⁻² **10**⁻¹ 10² 10³ 10 1 **10**⁴

362

Dimensionless time, t_D / r_D^2

©Alain C. Gringarten 2015

WELL TEST INTERPRETATION MODELS

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage	Homogeneous	Infinite extent
Skin	Heterogeneous	Specified Rate
Fracture	-2-Porosity	Specified Pressure
Partial	-2-Permeability	Leaky Boundary
Horizontal Well	-Composite	
EARLY TIMES	MIDDLE TIMES	LATE TIMES

SCHEMATIC OF A VERTICALLY FRACTURED WELL AT THE CENTRE OF A RECTANGULAR RESERVOIR

INFINITE CONDUCTIVITY VERTICAL FRACTURE Flow Regimes

Linear Flow

Pseudo-Radial Flow

DERIVATIVE FOR HIGH CONDUCTIVITY FRACTURE (Early Times)

$$p_D = \left(\pi t_{Df}\right)^{1/2}$$

$$p_D = \frac{kh}{141.2\Delta q \, B \, \mu} \, \Delta p$$

$$t_{Df} = \frac{0.000264 \, k}{\phi \mu \, c_t x_f^2} \Delta t$$

$$\frac{dp_{D}}{d\ln(t_{Df})} = 0.5 \left(\pi t_{Df}\right)^{1/2} = (0.5)p_{D}$$

- □ Half-unit slope log-log straight line
- **Derivative is one half the pressure**

STRAIGHT LINE METHODS FOR A HIGH CONDUCTIVITY FRACTURE (Early Times)

FRACTURED WELL

DIRECT METHOD

INFINITE CONDUCTIVITY FRACTURE

- Wellbore Storage and Skin type curves
- Infinite Conductivity Fracture

FINITE CONDUCTIVITY FRACTURE

DIRECT METHOD FOR HIGH CONDUCTIVITY VERTICAL FRACTURE

Well with Wellbore Storage & Skin, in a Reservoir of Infinite Extent with Homogeneous Behaviour

Minimum value of $C_D e^{2S}$ **for an acidized well** Gringarten, Bourdet, Landel and Kniazeff SPE8205 54th ATCE Las Vegas 1979

Wellbore

Acidized zone

 $k = \infty \quad \varphi = \varphi_m$

 $C_{w+S} = C_w + \pi \left(r_{we}^2 - r_w^2\right) h \varphi c_t$

$$\begin{split} C_{w+S} &= C_w + \pi \ r_w^2 \left(e^{-2S} - 1 \right) h \ \varphi \ c_t \\ \left(C e^{2S} \right)_{w+S} &= \left(C e^{2S} \right)_w + \pi \ r_w^2 \left(1 - e^{-2S} \right) h \ \varphi \ c_t \\ \left(C_D e^{2S} \right)_{w+S} &= \left(C_D e^{2S} \right)_w + \frac{\pi \ r_w^2 \left(1 - e^{-2S} \right) h \ \varphi \ c_t }{2 \ \pi \ h \ \varphi \ c_t \ r_w^2} = \left(C_D e^{2S} \right)_w + \frac{1 - e^{-2S}}{2} \end{split}$$

Minimum value of $(C_D e^{2S})_{w+S} = 0.5$

Lower values of $(C_D e^{2S})_{w+S}$ must correspond to fractured wells with wellbore storage

Drawdown Type Curve for a Well with Wellbore Storage & Skin, in a Reservoir of Infinite Extent with Homogeneous Behaviour

Fractured Well with Wellbore Storage & Skin

INFINITE CONDUCTIVITY VERTICAL FRACTURE AT THE CENTRE OF A CLOSED RECTANGLE

Gringarten SPE 7452 1978

©Alain C. Gringarten 2015

INFINITE CONDUCTIVITY VERTICAL FRACTURE AT THE CENTRE OF A CLOSED RECTANGLE

FINITE CONDUCTIVITY VERTICAL FRACTURE Flow Regimes

Bi-Linear & Linear Flow

Pseudo-Radial Flow

DERIVATIVE FOR LOW CONDUCTIVITY FRACTURE (Early Times)

$$p_{D} = 2.45 \left(k_{fD} w_{D} \right)^{-1/2} \left(t_{Df} \right)^{1/4}$$

$$p_{D} = \frac{kh}{141.2\Delta q B \mu} \Delta p$$

$$t_{Df} = \frac{0.000264 k}{\phi \mu c_{t} x_{f}^{2}} \Delta t$$

$$k_{fD} w_{D} = \frac{k_{f} w_{f}}{k x_{f}}$$

$$\frac{dp_D}{d\ln(t_{Df})} = (0.25)2.45(k_{fD}w_D)^{-1/2}(t_{Df})^{1/4} = (0.25)p_D$$

- **Quarter-unit slope log-log straight line**
- **Derivative is one fourth the pressure**

STRAIGHT LINE METHOD FOR A LOW CONDUCTIVITY FRACTURE (Early Times)

FINITE CONDUCTIVITY VERTICAL FRACTURE

382

FINITE CONDUCTIVITY VERTICAL FRACTURE

FINITE CONDUCTIVITY VERTICAL FRACTURE AT THE CENTRE OF A CLOSED SQUARE

FINITE CONDUCTIVITY VERTICAL FRACTURE

DAMAGED FRACTURE

Choked vertical fracture Vertical fracture with fluid loss damage Cinco-Ley and Samaniego SPE 6752 52nd ATCE(Sept 1977) Chavez, Alejandro and Cinco-Ley, SPE 104004(Sept., 2006) **Damaged zone Damaged zone** SKIN ADDITIVE TO DIMENSIONLESS PRESSURE • NO EFFECT ON DERIVATIVE UNLESS THERE IS WELLBORE STORAGE • **INFINITE CONDUCTIVITY** FINITE CONDUCTIVITY Dimensionless Pressure, p_D & Derivative, p_D Dimensionless Pressure, p_D & Derivative, p_{D'} 10² 10² 10 10 Pressure Pressure Fracture skin C_{Df}=0 S=1 1 Derivative Derivative 0.5 10⁻¹ =0 5=0 0.2 ©Alain C. Gringarten 2015 0.05 **10**⁻¹ 10⁻² 10 **10**-6 10-4 10⁻² 10² 1 10⁻³ 10⁻² 10² 10⁻¹ 10³ 1 10 Dimensionless time, t_{Df} Dimensionless time, t_{Df}

UNIFORM FLUX VERTICAL FRACTURE

 $q_m(x,t)$ influx / unit area / unit time

- $\cdot q_m(x,t)$ uniform (constant) over the fracture length: **UNIFORM FLUX FRACTURE**
- p_m(x,t) uniform (constant) over the fracture length:
- INFINITE CONDUCTIVITY FRACTURE • Infinite fracture is a limiting case of

WELL TEST INTERPRETATION MODELS

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage Skin Fracture Partial Penetration	Homogeneous Heterogeneous -2-Porosity -2-Permeability -Composite	Infinite extent Specified Rate Specified Pressure Leaky Boundary
EARLY TIMES	MIDDLE TIMES	LATE TIMES

Well with wellbore storage and skin and limited entry in an infinite reservoir with homogeneous behaviour

©Alain C. Gringarten 2015
STRAIGHT LINE METHOD FOR SPHERICAL FLOW (Middle Times)

DERIVATIVE FOR SPHERICAL FLOW (Middle Times)

$$p_{\text{SPH }D} = \frac{1}{2} \left[1 - \left(\pi t_{\text{SPH }D} \right)^{-1/2} \right]$$
$$p_{\text{SPH }D} = \frac{k_{\text{SPH }} r_{\text{SPH }D}}{141.2 \, \Delta q B \mu} \Delta p$$
$$t_{\text{SPH }D} = \frac{0.00264 k_{\text{SPH }}}{\phi \, \mu \, c_t \, r_{\text{SPH }}^2} \Delta t$$

$$\frac{dp_{D}}{d\ln(t_{\text{SPH }D})} = \frac{1}{2} \left[\frac{1}{2} \left(\pi t_{\text{SPH }D} \right)^{-1/2} \right]$$

✓ Negative Half-unit slope log-log straight line

WELL WITH LIMITED ENTRY

©Alain C. Gringarten 2015

WELL WITH LIMITED ENTRY

©Alain C. Gringarten 2015

WELL WITH LIMITED ENTRY

$$S_{c} \approx \left(\frac{h}{h_{w}} - 1\right) \ln\left(\frac{\pi}{2} \frac{h}{r_{w}} \sqrt{\frac{k_{r}}{k_{z}}}\right) + \frac{h}{h_{w}} \ln\left[\frac{1}{2\frac{h}{h_{w}} + 1} \sqrt{\frac{\left(\frac{Z_{w}}{h} + 0.25\right)\left(1 - \frac{Z_{w}}{h} + 0.25\right)}{\left(\frac{Z_{w}}{h} - 0.25\right)\left(1 - \frac{Z_{w}}{h} - 0.25\right)}}\right]$$

Maureen A2

Maureen A2 Test 1 (Exploration)

399

©Alain C. Gringarten 2015

WELL TEST INTERPRETATION MODELS

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage	Homogeneous	Infinite extent
Skin	Heterogeneous	Specified Rate
Fracture	-2-Porosity	Specified Pressure
Partial	-2-Permeability	Leaky Boundary
Horizontal Well	-Composite	
EARLY TIMES	MIDDLE TIMES	LATE TIMES

Horizontal well with wellbore storage and skin in an infinite reservoir with homogeneous behaviour

Log of Elapsed time

©Alain C. Gringarten 2015

©Alain C. Gringarten 2015

$$S_{c} = 0.81 - 1.151 \left\{ 2 \log \frac{1}{2} \frac{L}{h} \frac{h}{r_{w}} + 2 \frac{h}{L} \sqrt{\frac{k_{r}}{k_{z}}} \log \left[\pi \frac{r_{w}}{h} \left(1 + \sqrt{\frac{k_{r}}{k_{z}}} \right) \sin \pi \frac{Z_{w}}{h} \right] \right\} - 2 \frac{k_{r}}{k_{z}} \left(\frac{h}{L} \right)^{2} \left[\frac{1}{3} - \frac{Z_{w}}{h} + \left(\frac{Z_{w}}{h} \right)^{2} \right]$$

©Alain C. Gringarten 2015

©Alain C. Gringarten 2015

©Alain C. Gringarten 2015

Cross section Well H

Test on Well H

©Alain C. Gringarten 2015 412

Analysis of test on Well H

4 ©Alain C. Gringarten <mark>2015</mark> 415

INCLINED WELL

80⁰ well

WELL TEST INTERPRETATION MODELS

NEAR WELLBORE EFFECTS	RESERVOIR BEHAVIOUR	BOUNDARY EFFECTS
Wellbore Storage Skin Fracture Partial Penetration Horizontal Well	Homogeneous Heterogeneous - 2-Porosity - 2-Permeability	Infinite extent Specified Rate Specified Pressure Leaky Boundary
EARLY TIMES	MIDDLE TIMES	LATE TIMES

Well with wellbore storage and skin in an infinite reservoir with composite behaviour

©Alain C. Gringarten 2015

DERIVATIVE FOR HETEROGENEOUS BEHAVIOUR (Middle Times)

$$\left(\frac{kh}{\mu}\right)_{1} \rightarrow \left(\frac{kh}{\mu}\right)_{2}$$

Storativity change

$$(\phi c_t h)_1 \rightarrow (\phi c_t h)_2$$

(2) > (1)

Log of elapsed time

©Alain C. Gringarten 2015

©Alain C. Gringarten 2015

COMPOSITE BEHAVIOUR Water well in Croatia

COMPOSITE BEHAVIOUR Water well in Croatia

COMPOSITE BEHAVIOUR Water well in Croatia

COMPOSITE BEHAVIOUR Water well in Croatia

©Alain C. Gringarten 2015

COMPOSITE BEHAVIOUR Gas well off-shore Louisiana

COMPOSITE BEHAVIOUR DUE TO FLUIDS

436

VOLATILE OIL WELL

©Alain C. Gringarten 2015

VOLATILE OIL WELL

